

    
      
          
            
  
Contents



	Index Invalidation Rules in the Swift Standard Library

	Access Control

	Driver Design & Internals

	Parseable Driver Output

	Error Handling in Swift 2.0

	Error Handling Rationale and Proposal

	Generics in Swift

	Logical Objects

	Object Initialization

	Pattern Matching

	Stored and Computed Variables

	Swift Intermediate Language (SIL)

	Type Checker Design and Implementation

	Debugging the Swift Compiler









          

      

      

    

  

    
      
          
            
  
Index Invalidation Rules in the Swift Standard Library


Points to consider


	Collections can be implemented as value types or a reference types.



	Copying an instance of a value type, or copying a reference has
well-defined semantics built into the language and is not controllable by the
user code.

Consequence: value-typed collections in Swift have to use copy-on-write for
data stored out-of-line in reference-typed buffers.



	We want to be able to pass/return a Collection along with its indices in a
safe manner.

In Swift, unlike C++, indices are not sufficient to access collection data;
one needs an index and a collection.  Thus, merely passing a collection by
value to a function should not invalidate indices.








General principles

In C++, validity of an iterator is a property of the iterator itself, since
iterators can be dereferenced to access collection elements.

In Swift, in order to access a collection element designated by an index,
subscript operator is applied to the collection, C[I].  Thus, index is
valid or not only in context of a certain collection instance at a certain
point of program execution.  A given index can be valid for zero, one or more
than one collection instance at the same time.

An index that is valid for a certain collection designates an element of that
collection or represents a one-past-end index.

Operations that access collection elements require valid indexes (this includes
accessing using the subscript operator, slicing, swapping elements, removing
elements etc.)

Using an invalid index to access elements of a collection leads to unspecified
memory-safe behavior.  (Possibilities include trapping, performing the
operation on an arbitrary element of this or any other collection etc.)
Concrete collection types can specify behavior; implementations are advised to
perform a trap.

An arbitrary index instance is not valid for an arbitrary collection instance.

The following points apply to all collections, defined in the library or by the
user:


	Indices obtained from a collection C via C.startIndex,
C.endIndex and other collection-specific APIs returning indices, are
valid for C.



	If an index I is valid for a collection C, a copy of I is valid
for C.



	If an index I is valid for a collection C, indices obtained from
I via I.successor(), I.predecessor(), and other index-specific
APIs, are valid for C.
FIXME: disallow startIndex.predecessor(), endIndex.successor()



	Indices of collections and slices freely interoperate.

If an index I is valid for a collection C, it is also valid for
slices of C, provided that I was in the bounds that were passed to
the slicing subscript.

If an index I is valid for a slice obtained from a collection C, it
is also valid for C itself.



	If an index I is valid for a collection C, it is also valid for
a copy of C.



	If an index I is valid for a collection C, it continues to be valid
after a call to a non-mutating method on C.



	Calling a non-mutating method on a collection instance does not invalidate
any indexes.



	Indices behave as if they are composites of offsets in the underlying data
structure.  For example:


	an index into a set backed by a hash table with open addressing is the
number of the bucket where the element is stored;

	an index into a collection backed by a tree is a sequence of integers
that describe the path from the root of the tree to the leaf node;

	an index into a lazy flatMap collection consists of a pair of indices, an
index into the base collection that is being mapped, and the index into
the result of mapping the element designated by the first index.



This rule does not imply that indices should be cheap to convert to actual
integers.  The offsets for consecutive elements could be non-consecutive
(e.g., in a hash table with open addressing), or consist of multiple
offsets so that the conversion to an integer is non-trival (e.g., in a
tree).

Note that this rule, like all other rules, is an “as if” rule.  As long as
the resulting semantics match what the rules dictate, the actual
implementation can be anything.

Rationale and discussion:


	This rule is mostly motivated by its consequences, in particular, being
able to mutate an element of a collection without changing the
collection’s structure, and, thus, without invalidating indices.

	Replacing a collection element has runtime complexity O(1) and is not
considered a structural mutation.  Therefore, there seems to be no reason
for a collection model would need to invalidate indices from the
implementation point of view.

	Iterating over a collection and performing mutations in place is a common
pattern that Swift’s collection library needs to support.  If replacing
individual collection elements would invalidate indices, many common
algorithms (like sorting) wouldn’t be implementable directly with
indices; the code would need to maintain its own shadow indices, for
example, plain integers, that are not invalidated by mutations.







Consequences:


	The setter of MutableCollection.subscript(_: Index) does not invalidate
any indices.  Indices are composites of offsets, so replacing the value does
not change the shape of the data structure and preserves offsets.



	A value type mutable linked list can not conform to
MutableCollectionType.  An index for a linked list has to be implemented
as a pointer to the list node to provide O(1) element access.  Mutating an
element of a non-uniquely referenced linked list will create a copy of the
nodes that comprise the list.  Indices obtained before the copy was made
would point to the old nodes and wouldn’t be valid for the copy of the list.

It is still valid to have a value type linked list conform to
CollectionType, or to have a reference type mutable linked list conform
to MutableCollection.





The following points apply to all collections by default, but specific
collection implementations can be less strict:


	A call to a mutating method on a collection instance, except the setter of
MutableCollection.subscript(_: Index), invalidates all indices for that
collection instance.



Consequences:


	Passing a collection as an inout argument invalidates all indexes for
that collection instance, unless the function explicitly documents stronger
guarantees.  (The function can call mutating methods on an inout argument
or completely replace it.)
	Swift.swap() does not invalidate any indexes.










Additional guarantees for Swift.Array, Swift.ContiguousArray, Swift.ArraySlice

Valid array indexes can be created without using Array APIs.  Array indexes
are plain integers.  Integers that are dynamically in the range 0..<A.count
are valid indexes for the array or slice A.  It does not matter if an index
was obtained from the collection instance, or derived from input or unrelated
data.

Traps are guaranteed.  Using an invalid index to designate elements of an
array or an array slice is guaranteed to perform a trap.




Additional guarantees for Swift.Dictionary

Insertion into a Dictionary invalidates indexes only on a rehash.  If a
Dictionary has enough free buckets (guaranteed by calling an initializer or
reserving space), then inserting elements does not invalidate indexes.

Note: unlike C++’s std::unordered_map, removing elements from a
Dictionary invalidates indexes.







          

      

      

    

  

    
      
          
            
  
Access Control

The general guiding principle of Swift access control:


No entity can be defined in terms of another entity that has a lower
access level.


There are three levels of access: “private”, “internal”, and “public”.
Private entities can only be accessed from within the source file where they
are defined. Internal entities can be accessed anywhere within the module they
are defined. Public entities can be accessed from anywhere within the module
and from any other context that imports the current module.

The names public and private have precedent in many languages;
internal comes from C#. In the future, public may be used for both API
and SPI, at which point we may design additional annotations to distinguish the
two.

By default, most entities in a source file have internal access.
This optimizes for the most common case—a single-target application
project—while not accidentally revealing entities to clients of a framework
module.



	Rules
	Globals and Members

	Protocols

	Structs, Enums, and Classes

	Types





	Runtime Guarantees
	Interaction with Objective-C





	Non-Goals: “class-only” and “protected”

	Potential Future Directions






Rules

Access to a particular entity is considered relative to the current
access context. The access context of an entity is the current
file (if private), the current module (if internal), or the current
program (if public). A reference to an entity may only be written within
the entity’s access context.

If a particular entity is not accessible, it does not appear in name lookup,
unlike in C++. However, access control does not restrict access to members via
runtime reflection (where applicable), nor does it necessarily restrict
visibility of symbols in a linked binary.


Globals and Members

A global function, constant, or variable may have any access level less than
or equal to the access level of its type. That is, a private constant can
have public type, but not the other way around.

Accessors for variables have the same access level as their associated variable.
The setter may be explicitly annotated with an access level less than or equal
to the access level of the variable; this is written as private(set) or
internal(set) before the var introducer.

An initializer, method, subscript, or property may have any access level less
than or equal to the access level of its type (including the implicit ‘Self’
type), with a few additional rules:


	If the type’s access level is private, the access level of members
defaults to private. If the type’s access level is internal or
public, the access level of members defaults to internal.

	If a member is used to satisfy a protocol requirement, its access level must
be at least as high as the protocol conformance’s; see Protocols below.

	If an initializer is required by a superclass, its access level must be
at least as high as the access level of the subclass itself.

	Accessors for subscripts follow the same rules as accessors for variables.

	A member may be overridden whenever it is accessible.



The implicit memberwise initializer for a struct has the minimum access level
of all of the struct’s stored properties, except that if all properties are
public the initializer is internal. The implicit no-argument
initializer for structs and classes follows the default access level for the
type.

Currently, enum cases always have the same access level as the enclosing enum.

Deinitializers are only invoked by the runtime and do not nominally have access.
Internally, the compiler represents them as having the same access level as the
enclosing type.




Protocols

A protocol may have any access level less than or equal to the access levels
of the protocols it refines. That is, a private ExtendedWidget protocol can
refine an public Widget protocol, but not the other way around.

The access level of a requirement is the access level of the enclosing
protocol, even when the protocol is public. Currently, requirements may not
be given a lower access level than the enclosing protocol.

Swift does not currently support private protocol conformances, so for runtime
consistency, the access level of the conformance of type T to protocol P is
equal to the minimum of T’s access level and P’s access level; that is, the
conformance is accessible whenever both T and P are accessible. This does not
change if the protocol is conformed to in an extension. (The access level of a
conformance is not currently reflected in the source, but is a useful concept
for applying restrictions consistently.)

All members used to satisfy a conformance must have an access level at least as
high as the conformance’s. This ensures consistency between views of the type;
if any member has a lower access level than the conformance, then the member
could be accessed anyway through a generic function constrained by the protocol.


Note

This rule disallows an internal member of a protocol extension to satisfy
a public requirement for a public type. Removing this limitation is
not inherently unsafe, but (a) may be unexpected given the lack of explicit
reference to the member, and (b) results in references to non-public symbols
in the current representation.



A protocol may be used as a type whenever it is accessible. A nominal can
conform to a protocol whenever the protocol is accessible.




Structs, Enums, and Classes

A struct, enum, or class may be used as a type whenever it is accessible. A
struct, enum, or class may be extended whenever it is accessible.

A class may be subclassed whenever it is accessible. A class may have any
access level less than or equal to the access level of its superclass.

Members in an extension have the same default access level as members declared
within the extended type. However, an extension may be marked with an explicit
access modifier (e.g. private extension), in which case the default
access level of members within the extension is changed to match.

Extensions with explicit access modifiers may not add new protocol
conformances, since Swift does not support private protocol conformances
(see Protocols above).

A type may conform to a protocol with lower access than the type itself.




Types

A nominal type’s access level is the same as the access level of the nominal
declaration itself. A generic type’s access level is the minimum of the access
level of the base type and the access levels of all generic argument types.

A tuple type’s access level is the minimum of the access levels of its
elements. A function type’s access level is the minimum of the access levels of
its input and return types.

A typealias may have any access level up to the access level of the type it
aliases. That is, a private typealias can refer to an public type, but
not the other way around. This includes associated types used to satisfy
protocol conformances.






Runtime Guarantees

Non-public members of a class or extension will not be seen by subclasses
or other extensions from outside the module. Therefore, members of a subclass
or extension will not conflict with or inadvertently be considered to override
non-accessible members of the superclass.

Both private and internal increase opportunities for devirtualization,
though it is still possible to put a subclass of a private class within the
same file.

Most information about a non-public entity still has to be put into a
module file for now, since we don’t have resilience implemented. This can be
improved later, and is no more revealing than the information currently
available in the runtime for pure Objective-C classes.


Interaction with Objective-C

If an entity is exposed to Objective-C, most of the runtime guarantees and
optimization opportunities go out the window. We have to use a particular
selector for members, everything can be inspected at runtime, and even a
private member can cause selector conflicts. In this case, access control is
only useful for discipline purposes.

Members explicitly marked private are not exposed to Objective-C unless
they are also marked @objc (or @IBAction or similar), even if declared
within a class implicitly or explicitly marked @objc.

Any public entities will be included in the generated header. In an
application or unit test target, internal entities will be exposed as well.






Non-Goals: “class-only” and “protected”

This proposal omits two forms of access control commonly found in other
languages, a “class-implementation-only” access (often called “private”), and a
“class and any subclasses” access (often called “protected”). We chose not to
include these levels of access control because they do not add useful
functionality beyond private, internal, and public.


	“class-only”

	If “class-only” includes extensions of the class, it is clear that it
provides no protection at all, since a class may be extended from any context
where it is accessible. So a hypothetical “class-only” must already be
limited with regards to extensions. Beyond that, however, a “class-only”
limit forces code to be declared within the class that might otherwise
naturally be a top-level helper or an extension method on another type.

private serves the proper use case of limiting access to the
implementation details of a class (even from the rest of the module!) while
not requiring that all of those implementation details be written lexically
inside the class.



	“protected”

	“protected” access provides no guarantees of information hiding, since any
subclass can now access the implementation details of its superclass—and
expose them publicly, if it so chooses. This interacts poorly with our future
plans for resilient APIs. Additionally, it increases the complexity of the
access control model for both the compiler and for developers, and like
“class-only” it is not immediately clear how it interacts with extensions.

Though it is not compiler-enforced, members that might be considered
“protected” are effectively publicly accessible, and thus should be marked
public in Swift. They can still be documented as intended for overriding
rather than for subclassing, but the specific details of this are best dealt
with on a case-by-case basis.








Potential Future Directions


	Allowing private or internal protocol conformances, which are only
accessible at compile-time from a particular access context.

	Limiting particular capabilities, such as marking something final(public)
to restrict subclassing or overriding outside of the current module.

	Allowing the Swift parts of a mixed-source framework to access private
headers.

	Revealing internal Swift API in a mixed-source framework in a second
generated header.

	Levels of public, for example public("SPI").

	Enum cases less accessible than the enum.

	Protocol requirements less accessible than the protocol.









          

      

      

    

  

    
      
          
            
  
Driver Design & Internals



	Introduction

	Driver Stages
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	Pipeline: Converting Args into Actions

	Build: Translating Actions into Jobs using a ToolChain

	Execute: Running the Jobs in a Compilation using a TaskQueue










Introduction

This document serves to describe the high-level design of the Swift 2.0 compiler
driver (which includes what the driver is intended to do, and the approach it
takes to do that), as well as the internals of the driver (which is meant to
provide a brief overview of and rationale for how the high-level design is
implemented).

The Swift driver is not intended to be GCC/Clang compatible, as it does not
need to serve as a drop-in replacement for either driver. However, the design
of the driver is inspired by Clang’s design.




Driver Stages

The compiler driver for Swift roughly follows the same design as Clang’s
compiler driver:


	Parse: Command-line arguments are parsed into Args. A ToolChain is
selected based on the current platform.

	Pipeline: Based on the arguments and inputs, a tree of Actions is
generated. These are the high-level processing steps that need to occur,
such as “compile this file” or “link the output of all compilation actions”.

	Bind: The ToolChain converts the Actions into a set of Jobs.
These are individual commands that need to be run, such as
“ld main.o -o main”. Jobs have dependencies, but are not organized into a
tree structure.

	Execute: The Jobs are run in a Compilation, which spawns off
sub-processes for each job that needs execution. The Compilation is
responsible for deciding which Jobs actually need to run, based on
dependency information provided by the output of each sub-process. The
low-level management of sub-processes is handled by a TaskQueue.




Parse: Option parsing

The command line arguments are parsed as options and inputs into Arg instances.
Some miscellaneous validation and normalization is performed. Most of the
implementation is provided by LLVM.

An important part of this step is selecting a ToolChain. This is the Swift
driver’s view of the current platform’s set of compiler tools, and determines
how it will attempt to accomplish tasks. More on this below.

One of the optional steps here is building an output file map. This allows a
build system (such as Xcode) to control the location of intermediate output
files. The output file map uses a simple JSON format mapping inputs to a map of
output paths, keyed by file type. Entries under an input of “” refer to the
top-level driver process.


FIXME

Certain capabilities, like incremental builds or compilation without
linking, currently require an output file map. This should not be necessary.






Pipeline: Converting Args into Actions

At this stage, the driver will take the input Args and input files and
establish a graph of Actions. This details the high-level tasks that need to be
performed. The graph (a DAG) tracks dependencies between actions, but also
manages ownership.


FIXME

Actions currently map one-to-one to sub-process invocations. This means
that there are actions for things that should be implementation details,
like generating dSYM output.






Build: Translating Actions into Jobs using a ToolChain

Once we have a graph of high-level Actions, we need to translate that into
actual tasks to execute. This starts by determining the output that each Action
needs to produce based on its inputs. Then we ask the ToolChain how to perform
that Action on the current platform. The ToolChain produces a Job, which wraps
up both the output information and the actual invocation. It also remembers
which Action it came from and any Jobs it depends on. Unlike the Action graph,
Jobs are owned by a single Compilation object and stored in a flat list.

When a Job represents a compile of a single file, it may also be used for
dependency analysis, to determine whether it is safe to not recompile that file
in the current build. This is covered by checking if the input has been
modified since the last build; if it hasn’t, we only need to recompile if
something it depends on has changed.




Execute: Running the Jobs in a Compilation using a TaskQueue

A Compilation’s goal is to make sure every Job in its list of Jobs is handled.
If a Job needs to be run, the Compilation attempts to schedule it. If the
Job’s dependencies have all been completed (or determined to be skippable), it
is added to the TaskQueue; otherwise it is marked as blocked.

To support Jobs compiling individual Swift files, which may or may not need to
be run, the Compilation keeps track of a DependencyGraph. (If file A depends on
file B and file B has changed, file A needs to be recompiled.) When a Job
completes successfully, the Compilation will both re-attempt to schedule Jobs
that were directly blocked on it, and check to see if any other Jobs now need
to run based on the DependencyGraph. See the section on Dependency Analysis for more information.

The Compilation’s TaskQueue controls the low-level aspects of managing
subprocesses. Multiple Jobs may execute simultaneously, but communication with
the parent process (the driver) is handled on a single thread. The level of
parellelism may be controlled by a compiler flag.

If a Job does not finish successfully, the Compilation needs to record which
jobs have failed, so that they get rebuilt next time the user tries to build
the project.
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Introduction

This document serves to describe the parseable output format provided by the
Swift compiler driver with the “-parseable-output” flag. This output format is
intended to be parsed by other programs; one such use case is to allow an IDE to
construct a detailed log based on the commands the driver issued.




Message Format

The parseable output provided by the Swift driver is provided as messages
encoded in JSON objects. All messages are structured like this:

<Message Length>\n
{
  "kind": "<Message Kind>",
  "name": "<Message Name>",
  "<key>": "<value>",
  ...
}\n





This allows the driver to pass as much information as it wants about the ongoing
compilation, and programs which parse this data can decide what to use and what
to ignore.




Message Kinds



	Began Message

	Finished Message

	Signalled Message

	Skipped Message





The driver may emit four kinds of messages: “began”, “finished”, “signalled”,
and “skipped”.


Began Message

A “began” message indicates that a new task began. As with all task-based
messages, it will include the task’s PID under the “pid” key. It may specify the
task’s inputs as an array of paths under the “inputs” key. It may specify the
task’s outputs as an array of objects under the “outputs” key. An “outputs”
object will have two fields, a “kind” describing the type of the output, and a
“path” containing the path to the output. A “began” message will specify the
command which was executed under the “command” key.

Example:

{
  "kind": "began",
  "name": "compile",
  "pid": 12345,
  "inputs": [ "/src/foo.swift" ],
  "outputs": [
     {
       "type": "object",
       "path": "/build/foo.o"
     },
     {
       "type": "swiftmodule",
       "path": "/build/foo.swiftmodule"
     },
     {
       "type": "diagnostics",
       "path": "/build/foo.dia"
     },
  ],
  "command": "swift -frontend -c -primary-file /src/foo.swift /src/bar.swift -emit-module-path /build/foo.swiftmodule -emit-diagnostics-path /build/foo.dia"
}








Finished Message

A “finished” message indicates that a task finished execution. As with all task-
based messages, it will include the task’s PID under the “pid” key. It will
include the exit status of the task under the “exit-status” key. It may include
the stdout/stderr of the task under the “output” key; if this key is missing,
no output was generated by the task.

Example:

{
  "kind": "finished",
  "name": "compile",
  "pid": 12345,
  "exit-status": 0
  // "output" key omitted because there was no stdout/stderr.
}








Signalled Message

A “signalled” message indicates that a task exited abnormally due to a signal.
As with all task-based message, it will include the task’s PID under the “pid”
key. It may include an error message describing the signal under the
“error-message” key. As with the “finished” message, it may include the
stdout/stderr of the task under the “output” key; if this key is missing, no
output was generated by the task.

Example:

{
  "kind": "signalled",
  "name": "compile",
  "pid": 12345,
  "error-message": "Segmentation fault: 11"
  // "output" key omitted because there was no stdout/stderr.
}








Skipped Message

A “skipped” message indicates that the driver determined a command did not need to
run during the current compilation. A “skipped” message is equivalent to a “began”
message, with the exception that it does not include the “pid” key.

Example:

{
  "kind": "skipped",
  "name": "compile",
  "inputs": [ "/src/foo.swift" ],
  "outputs": [
     {
       "type": "object",
       "path": "/build/foo.o"
     },
     {
       "type": "swiftmodule",
       "path": "/build/foo.swiftmodule"
     },
     {
       "type": "diagnostics",
       "path": "/build/foo.dia"
     },
  ],
  "command": "swift -frontend -c -primary-file /src/foo.swift /src/bar.swift -emit-module-path /build/foo.swiftmodule -emit-diagnostics-path /build/foo.dia"
}










Message Names

The name of the message identifies the kind of command the message describes.
Some valid values are:



	compile

	merge-module

	link

	generate-dsym






A “compile” message represents a regular Swift frontend command.
A “merge-module” message represents an invocation of the Swift frontend which is
used to merge partial swiftmodule files into a complete swiftmodule. A “link”
message indicates that the driver is invoking the linker to produce an
executable or a library. A “generate-dsym” message indicates that the driver is
invoking dsymutil to generate a dSYM.

Parsers of this format should be resilient in the event of an unknown name, as
the driver may emit messages with new names whenever it needs to execute a new
kind of command.







          

      

      

    

  

    
      
          
            
  
Error Handling in Swift 2.0

As a tentpole feature for Swift 2.0, we are introducing a new
first-class error handling model.  This feature provides standardized
syntax and language affordances for throwing, propagating, catching,
and manipulating recoverable error conditions.

Error handling is a well-trod path, with many different approaches in
other languages, many of them problematic in various ways.  We believe
that our approach provides an elegant solution, drawing on the lessons
we’ve learned from other languages and fixing or avoiding some of the
pitfalls.  The result is expressive and concise while still feeling
explicit, safe, and familiar; and we believe it will work beautifully
with the Cocoa APIs.

We’re intentionally not using the term “exception handling”, which
carries a lot of connotations from its use in other languages.  Our
proposal has some similarities to the exceptions systems in those
languages, but it also has a lot of important differences.


Kinds of Error

What exactly is an “error”?  There are many possible error conditions,
and they don’t all make sense to handle in exactly the same way,
because they arise in different circumstances and programmers have to
react to them differently.

We can break errors down into four categories, in increasing order of
severity:

A simple domain error arises from an operation that can fail in
some obvious way and which is often invoked speculatively.  Parsing an
integer from a string is a really good example.  The client doesn’t
need a detailed description of the error and will usually want to
handle the error immediately.  These errors are already well-modeled
by returning an optional value; we don’t need a more complex language
solution for them.

A recoverable error arises from an operation which can fail in
complex ways, but whose errors can be reasonably anticipated in
advance.  Examples including opening a file or reading from a network
connection.  These are the kinds of errors that Apple’s APIs use
NSError for today, but there are close analogues in many other APIs,
such as errno in POSIX.

Ignoring this kind of error is usually a bad idea, and it can even be
dangerous (e.g. by introducing a security hole).  Developers should be
strongly encouraged to write code that handles the error.  It’s common
for developers to want to handle errors from different operations in
the same basic way, either by reporting the error to the user or
passing the error back to their own clients.

These errors will be the focus on this proposal.

The final two classes of error are outside the scope of this proposal.
A universal error is theoretically recoverable, but by its nature
the language can’t help the programmer anticipate where it will come
from.  A logic failure arises from a programmer mistake and should
not be recoverable at all.  In our system, these kinds of errors are
reported either with Objective-C/C++ exceptions or simply by
logging a message and calling abort().  Both kinds of error are
discussed extensively in the rationale.  Having considered them
carefully, we believe that we can address them in a later release
without significant harm.




Aspects of the Design

This approach proposed here is very similar to the error handling
model manually implemented in Objective-C with the NSError
convention.  Notably, the approach preserves these advantages of this
convention:


	Whether a method produces an error (or not) is an explicit part of
its API contract.

	Methods default to not producing errors unless they are explicitly
marked.

	The control flow within a function is still mostly explicit: a
maintainer can tell exactly which statements can produce an error,
and a simple inspection reveals how the function reacts to the
error.

	Throwing an error provides similar performance to allocating an
error and returning it – it isn’t an expensive, table-based stack
unwinding process.

	Cocoa APIs using standard NSError patterns can be imported into
this world automatically.  Other common patterns (e.g. CFError,
errno) can be added to the model in future versions of Swift.



In addition, we feel that this design improves on Objective-C’s error
handling approach in a number of ways:


	It eliminates a lot of boilerplate control-flow code for propagating
errors.

	The syntax for error handling will feel familiar to people used to
exception handling in other languages.

	Defining custom error types is simple and ties in elegantly with
Swift enums.



As to basic syntax, we decided to stick with the familiar language of
exception handling.  We considered intentionally using different terms
(like raise / handle) to try to distinguish our approach from
other languages.  However, by and large, error propagation in this
proposal works like it does in exception handling, and people are
inevitably going to make the connection.  Given that, we couldn’t find
a compelling reason to deviate from the throw / catch legacy.

This document just contains the basic proposal and will be very
light on rationale.  We considered many different languages and
programming environments as part of making this proposal, and there’s
an extensive discussion of them in the separate rationale document.
For example, that document explains why we don’t simply allow all
functions to throw, why we don’t propagate errors using simply an
ErrorOr<T> return type, and why we don’t just make error propagation
part of a general monad feature.  We encourage you to read that
rationale if you’re interested in understanding why we made the
decisions we did.

With that out of the way, let’s get to the details of the proposal.




Typed propagation

Whether a function can throw is part of its type.  This applies to all
functions, whether they’re global functions, methods, or closures.

By default, a function cannot throw.  The compiler statically enforces
this: anything the function does which can throw must appear in a
context which handles all errors.

A function can be declared to throw by writing throws on the
function declaration or type:

func foo() -> Int {  // This function is not permitted to throw.
func bar() throws -> Int {   // This function is permitted to throw.





throws is written before the arrow to give a sensible and consistent
grammar for function types and implicit () result types, e.g.:

func baz() throws {

// Takes a 'callback' function that can throw.
// 'fred' itself can also throw.
func fred(callback: (UInt8) throws -> ()) throws {

// These are distinct types.
let a : () -> () -> ()
let b : () throws -> () -> ()
let c : () -> () throws -> ()
let d : () throws -> () throws -> ()





For curried functions, throws only applies to the innermost
function.  This function has type (Int) -> (Int) throws -> Int:

func jerry(i: Int)(j: Int) throws -> Int {





throws is tracked as part of the type system: a function value
must also declare whether it can throw.  Functions that cannot throw
are a subtype of functions that can, so you can use a function that
can’t throw anywhere you could use a function that can:

func rachel() -> Int { return 12 }
func donna(generator: () throws -> Int) -> Int { ... }

donna(rachel)





The reverse is not true, since the caller would not be prepared to
handle the error.

A call to a function which can throw within a context that is not
allowed to throw is rejected by the compiler.

It isn’t possible to overload functions solely based on whether the
functions throw.  That is, this is not legal:

func foo() {
func foo() throws {





A throwing method cannot override a non-throwing method or satisfy a
non-throwing protocol requirement.  However, a non-throwing method can
override a throwing method or satisfy a throwing protocol requirement.

It is valuable to be able to overload higher-order functions based on
whether an argument function throws, so this is allowed:

func foo(callback: () throws -> Bool) {
func foo(callback: () -> Bool) {






rethrows

Functions which take a throwing function argument (including as an
autoclosure) can be marked as rethrows:

extension Array {
  func map<U>(fn: ElementType throws -> U) rethrows -> [U]
}





It is an error if a function declared rethrows does not include a
throwing function in at least one of its parameter clauses.

rethrows is identical to throws, except that the function
promises to only throw if one of its argument functions throws.

More formally, a function is rethrowing-only for a function f if:


	it is a throwing function parameter of f,

	it is a non-throwing function, or

	it is implemented within f (i.e. it is either f or a function or
closure defined therein) and it does not throw except by either:
	calling a function that is rethrowing-only for f or

	calling a function that is rethrows, passing only functions
that are rethrowing-only for f.







It is an error if a rethrows function is not rethrowing-only for
itself.

A rethrows function is considered to be a throwing function.
However, a direct call to a rethrows function is considered to not
throw if it is fully applied and none of the function arguments can
throw.  For example:

// This call to map is considered not to throw because its
// argument function does not throw.
let absolutePaths = paths.map { "/" + $0 }

// This call to map is considered to throw because its
// argument function does throw.
let streams = try absolutePaths.map { try InputStream(filename: $0) }





For now, rethrows is a property of declared functions, not of
function values.  Binding a variable (even a constant) to a function
loses the information that the function was rethrows, and calls to
it will use the normal rules, meaning that they will be considered to
throw regardless of whether a non-throwing function is passed.

For the purposes of override and conformance checking, rethrows
lies between throws and non-throws.  That is, an ordinary
throwing method cannot override a rethrows method, which cannot
override a non-throwing method; but an ordinary throwing method can be
overridden by a rethrows method, which can be overridden by a
non-throwing method.  Equivalent rules apply for protocol conformance.






Throwing an error

The throw statement begins the propagation of an error.  It always
take an argument, which can be any value that conforms to the
ErrorType protocol (described below).

if timeElapsed > timeThreshold {
  throw HomeworkError.Overworked
}

throw NSError(domain: "whatever", code: 42, userInfo: nil)





As mentioned above, attempting to throw an error out of a function not
marked throws is a static compiler error.




Catching errors

A catch clause includes an optional pattern that matches the
error.  This pattern can use any of the standard pattern-matching
tools provided by switch statements in Swift, including boolean
where conditions.  The pattern can be omitted; if so, a where
condition is still permitted.  If the pattern is omitted, or if it
does not bind a different name to the error, the name error is
automatically bound to the error as if with a let pattern.

The try keyword is used for other purposes which it seems to fit far
better (see below), so catch clauses are instead attached to a
generalized do statement:

// Simple do statement (without a trailing while condition),
// just provides a scope for variables defined inside of it.
do {
   let x = foo()
}

// do statement with two catch clauses.
do {
  ...

} catch HomeworkError.Overworked {
  // a conditionally-executed catch clause

} catch _ {
  // a catch-all clause.
}





As with switch statements, Swift makes an effort to understand
whether catch clauses are exhaustive.  If it can determine it is, then
the compiler considers the error to be handled.  If not, the error
automatically propagates out out of scope, either to a lexically
enclosing catch clause or out of the containing function (which must
be marked throws).

We expect to refine the catch syntax with usage experience.




ErrorType

The Swift standard library will provide ErrorType, a protocol with
a very small interface (which is not described in this proposal).  The
standard pattern should be to define the conformance of an enum to
the type:

enum HomeworkError : ErrorType {
  case Overworked
  case Impossible
  case EatenByCat(Cat)
  case StopStressingMeWithYourRules
}





The enum provides a namespace of errors, a list of possible errors
within that namespace, and optional values to attach to each option.

Note that this corresponds very cleanly to the NSError model of an
error domain, an error code, and optional user data.  We expect to
import system error domains as enums that follow this approach and
implement ErrorType.  NSError and CFError themselves will also
conform to ErrorType.

The physical representation (still being nailed down) will make it
efficient to embed an NSError as an ErrorType and vice-versa.  It
should be possible to turn an arbitrary Swift enum that conforms to
ErrorType into an NSError by using the qualified type name as the
domain key, the enumerator as the error code, and turning the payload
into user data.




Automatic, marked, propagation of errors

Once an error is thrown, Swift will automatically propagate it out of
scopes (that permit it), rather than relying on the programmer to
manually check for errors and do their own control flow.  This is just
a lot less boilerplate for common error handling tasks.  However,
doing this naively would introduce a lot of implicit control flow,
which makes it difficult to reason about the function’s behavior.
This is a serious maintenance problem and has traditionally been a
considerable source of bugs in languages that heavily use exceptions.

Therefore, while Swift automatically propagates errors, it requires
that statements and expressions that can implicitly throw be marked
with the try keyword.  For example:

func readStuff() throws {
  // loadFile can throw an error.  If so, it propagates out of readStuff.
  try loadFile("mystuff.txt")

  // This is a semantic error; the 'try' keyword is required
  // to indicate that it can throw.
  var y = stream.readFloat()

  // This is okay; the try covers the entire statement.
  try y += stream.readFloat()

  // This try applies to readBool().
  if try stream.readBool() {
    // This try applies to both of these calls.
    let x = try stream.readInt() + stream.readInt()
  }

  if let err = stream.getOutOfBandError() {
    // Of course, the programmer doesn't have to mark explicit throws.
    throw err
  }
}





Developers can choose to “scope” the try very tightly by writing it
within parentheses or on a specific argument or list element:

// Ok.
let x = (try stream.readInt()) + (try stream.readInt())

// Semantic error: the try only covers the parenthesized expression.
let x2 = (try stream.readInt()) + stream.readInt()

// The try applies to the first array element.  Of course, the
// developer could cover the entire array by writing the try outside.
let array = [ try foo(), bar(), baz() ]





Some developers may wish to do this to make the specific throwing
calls very clear.  Other developers may be content with knowing that
something within a statement can throw. The compiler’s fixit hints will
guide developers towards inserting a single try that covers the entire
statement.  This could potentially be controlled someday by a coding
style flag passed to the compiler.


try!

To concisely indicate that a call is known to not actually throw at
runtime, try can be decorated with !, turning the error check
into a runtime assertion that the call does not throw.

For the purposes of checking that all errors are handled, a try!
expression is considered to handle any error originating from within
its operand.

try! is otherwise exactly like try: it can appear in exactly
the same positions and doesn’t affect the type of an expression.






Manual propagation and manipulation of errors

Taking control over the propagation of errors is important for some
advanced use cases (e.g. transporting an error result across threads
when synchronizing a future) and can be more convenient or natural for
specific use cases (e.g. handling a specific call differently within a
context that otherwise allows propagation).

As such, the Swift standard library should provide a standard
Rust-like Result<T> enum, along with API for working with it,
e.g.:


	A function to evaluate an error-producing closure and capture the
result as a Result<T>.

	A function to unpack a Result<T> by either returning its
value or propagating the error in the current context.



This is something that composes on top of the basic model, but that
has not been designed yet and details aren’t included in this
proposal.

The name Result<T> is a stand-in and needs to be designed and
reviewed, as well as the basic operations on the type.




defer

Swift should provide a defer statement that sets up an ad hoc
clean-up action to be run when the current scope is exited.  This
replicates the functionality of a Java-style finally, but more
cleanly and with less nesting.

This is an important tool for ensuring that explicitly-managed
resources are released on all paths.  Examples include closing a
network connection and freeing memory that was manually allocated.  It
is convenient for all kinds of error-handling, even manual propagation
and simple domain errors, but is especially nice with automatic
propagation.  It is also a crucial part of our long-term vision for
universal errors.

defer may be followed by an arbitrary statement.  The compiler
should reject a defer action that might terminate early, whether by
throwing or with return, break, or continue.

Example:

if exists(filename) {
  let file = open(filename, O_READ)
  defer close(file)

  while let line = try file.readline() {
    ...
  }

  // close occurs here, at the end of the formal scope.
}





If there are multiple defer statements in a scope, they are guaranteed
to be executed in reverse order of appearance.  That is:

let file1 = open("hello.txt")
defer close(file1)
let file2 = open("world.txt")
defer close(file2)
...
// file2 will be closed first.





A potential extension is to provide a convenient way to mark that a
defer action should only be taken if an error is thrown.  This is a
convenient shorthand for controlling the action with a flag.  We will
evaluate whether adding complexity to handle this case is justified
based on real-world usage experience.




Importing Cocoa

If possible, Swift’s error-handling model should transparently work
with the SDK with a minimal amount of effort from framework owners.

We believe that we can cover the vast majority of Objective-C APIs
with NSError** out-parameters by importing them as throws and
removing the error clause from their signature.  That is, a method
like this one from NSAttributedString:

- (NSData *)dataFromRange:(NSRange)range
       documentAttributes:(NSDictionary *)dict
                    error:(NSError **)error;





would be imported as:

func dataFromRange(range: NSRange,
                   documentAttributes dict: NSDictionary) throws -> NSData





There are a number of cases to consider, but we expect that most can
be automatically imported without extra annotation in the SDK, by
using a couple of simple heuristics:


	The most common pattern is a BOOL result, where a false value
means an error occurred.  This seems unambiguous.



	Also common is a pointer result, where a nil result usually
means an error occurred.  This appears to be universal in
Objective-C; APIs that can return nil results seem to do so via
out-parameters.  So it seems to be safe to make a policy decision
that it’s okay to assume that a nil result is an error by
default.

If the pattern for a method is that a nil result means it produced
an error, then the result can be imported as a non-optional type.



	A few APIs return void.  As far as I can tell, for all of these,
the caller is expected to check for a non-nil error.





For other sentinel cases, we can consider adding a new clang attribute
to indicate to the compiler what the sentinel is:


	There are several APIs returning NSInteger or NSUInteger.  At
least some of these return 0 on error, but that doesn’t seem like a
reasonable general assumption.

	AVFoundation provides a couple methods returning
AVKeyValueStatus.  These produce an error if the API returned
AVKeyValueStatusFailed, which, interestingly enough, is not the
zero value.



The clang attribute would specify how to test the return value for an
error.  For example:

+ (NSInteger)writePropertyList:(id)plist
                      toStream:(NSOutputStream *)stream
                        format:(NSPropertyListFormat)format
                       options:(NSPropertyListWriteOptions)opt
                         error:(out NSError **)error
  NS_ERROR_RESULT(0);

- (AVKeyValueStatus)statusOfValueForKey:(NSString *)key
                                  error:(NSError **)
  NS_ERROR_RESULT(AVKeyValueStatusFailed);





We should also provide a Clang attribute which specifies that the
correct way to test for an error is to check the out-parameter.  Both
of these attributes could potentially be used by the static analyzer,
not just Swift.  (For example, they could try to detect an invalid
error check.)

Cases that do not match the automatically imported patterns and that
lack an attribute would be left unmodified (i.e., they’d keep their
NSErrorPointer argument) and considered “not awesome” in the SDK
auditing tool.  These will still be usable in Swift: callers will get
the NSError back like they do today, and have to throw the result
manually.

For initializers, importing an initializer as throwing takes
precedence over importing it as failable.  That is, an imported
initializer with a nullable result and an error parameter would be
imported as throwing.  Throwing initializers have very similar
constraints to failable initializers; in a way, it’s just a new axis
of failability.

One limitation of this approach is that we need to be able to reconstruct
the selector to use when an overload of a method is introduced.  For this
reason, the import is likely to be limited to methods where  the error
parameter is the last one and the corresponding selector
chunk is either error: or the first chunk (see below).  Empirically,
this seems to do the right thing for all but two sets of APIs in the
public API:


	The ISyncSessionDriverDelegate category on NSObject declares
half-a-dozen methods like this:

- (BOOL)sessionDriver:(ISyncSessionDriver *)sender
        didRegisterClientAndReturnError:(NSError **)outError;





Fortunately, these delegate methods were all deprecated in Lion, and
are thus unavailable in Swift.



	NSFileCoordinator has half a dozen methods where the error:
clause is second-to-last, followed by a block argument.  These
methods are not deprecated as far as I know.





The above translation rule would import methods like this one from
NSDocument:

- (NSDocument *)duplicateAndReturnError:(NSError **)outError;





like so:

func duplicateAndReturnError() throws -> NSDocument





The AndReturnError bit is common but far from universal; consider
this method from NSManagedObject:

- (BOOL)validateForDelete:(NSError **)error;





This would be imported as:

func validateForDelete() throws





This is a really nice import, and it’s somewhat unfortunate that we
can’t import duplicateAndReturnError: as duplicate().




Potential future extensions to this model

We believe that the proposal above is sufficient to provide a huge
step forward in error handling in Swift programs, but there is always
more to consider in the future.  Some specific things we’ve discussed
(and may come back to in the future) but don’t consider to be core to
the Swift 2.0 model are:


Higher-order polymorphism

We should make it easy to write higher-order functions that behave
polymorphically with respect to whether their arguments throw.  This
can be done in a fairly simple way: a function can declare that it
throws if any of a set of named arguments do.  As an example (using
strawman syntax):

func map<T,U>(array: [T], fn: T -> U) throwsIf(fn) -> [U] {
  ...
}





There’s no need for a more complex logical operator than disjunction
for normal higher-order stuff.

This feature is highly desired (e.g. it would allow many otherwise
redundant overloads to be collapsed into a single definition), but it
may or may not make it into Swift 2.0 based on schedule limitations.




Generic polymorphism

For similar reasons to higher-order polymorphism, we should consider
making it easier to parameterize protocols on whether their operations
can throw.  This would allow the writing of generic algorithms, e.g.
over Sequence, that handle both conformances that cannot throw (like
Array) and those that can (like a hypothetical cloud-backed
implementation).

However, this would be a very complex feature, yet to be designed, and
it is far out-of-scope for Swift 2.0.  In the meantime, most standard
protocols will be written to not allow throwing conformances, so as to
not burden the use of common generic algorithms with spurious
error-handling code.




Statement-like functions

Some functions are designed to take trailing closures that feel like
sub-statements.  For example, autoreleasepool can be used this way:

autoreleasepool {
  foo()
}





The error-handling model doesn’t cause major problems for this.  The
compiler can infer that the closure throws, and autoreleasepool
can be overloaded on whether its argument closure throws; the
overload that takes a throwing closures would itself throw.

There is one minor usability problem here, though.  If the closure
contains throwing expressions, those expression must be explicitly
marked within the closure with try.  However, from the compiler’s
perspective, the call to autoreleasepool is also a call that
can throw, and so it must also be marked with try:

try autoreleasepool {    // 'try' is required here...
  let string = try parseString() // ...and here.
  ...
}





This marking feels redundant.  We want functions like
autoreleasepool to feel like statements, but marks inside builtin
statements like if don’t require the outer statement to be marked.
It would be better if the compiler didn’t require the outer try.

On the other hand, the “statement-like” story already has a number of
other holes: for example, break, continue, and return
behave differently in the argument closure than in statements.  In the
future, we may consider fixing that; that fix will also need to
address the error-propagation problem.




using

A using statement would acquire a resource, holds it for a fixed
period of time, optionally binds it to a name, and then releases it
whenever the controlled statement exits.  using has many
similarities to defer.  It does not subsume defer, which is useful
for many ad-hoc and tokenless clean-ups.  But it could be convenient
for the common pattern of a type-directed clean-up.




Automatically importing CoreFoundation and C functions

CF APIs use CFErrorRef pretty reliably, but there are several
problems here: 1) the memory management rules for CFErrors are unclear
and potentially inconsistent.  2) we need to know when an error is
raised.

In principle, we could import POSIX functions into Swift as throwing
functions, filling in the error from errno.  It’s nearly impossible
to imagine doing this with an automatic import rule, however; much
more likely, we’d need to wrap them all in an overlay.

In both cases, it is possible to pull these into the Swift error
handling model, but because this is likely to require massive SDK
annotations it is considered out of scope for iOS 9/OSX 10.11 & Swift 2.0.




Unexpected and universal errors

As discussed above, we believe that we can extend our current model to
support untyped propagation for universal errors.  Doing this well,
and in particular doing it without completely sacrificing code size
and performance, will take a significant amount of planning and
insight.  For this reason, it is considered well out of scope for
Swift 2.0.









          

      

      

    

  

    
      
          
            
  
Error Handling Rationale and Proposal

This paper surveys the error-handling world, analyzes various ideas
which have been proposed or are in practice in other languages, and
ultimately proposes an error-handling scheme for Swift together
with import rules for our APIs.


Fundamentals

I need to establish some terminology first.


Kinds of propagation

I’ve heard people talk about explicit vs. implicit propagation.
I’m not going to use those terms, because they’re not helpful: there
are at least three different things about error-handling that can be
more or less explicit, and some of the other dimensions are equally
important.

The most important dimensions of variation are:


	Whether the language allows functions to be designated as producing
errors or not; such a language has typed propagation.

	Whether, in a language with typed propagation, the default rule is
that that a function can produce an error or that it can’t; this
is the language’s default propagation rule.

	Whether, in a language with typed propagation, the language enforces
this statically, so that a function which cannot produce an error
cannot call a function which can without handling it; such a
language has statically-enforced typed propagation.  (A language
could instead enforce this dynamically by automatically inserting
code to assert if an error propagates out.  C++ does this.)

	Whether the language requires all potential error sites to be
identifiable as potential error sites; such a language has marked
propagation.

	Whether propagation is done explicitly with the normal data-flow and
control-flow tools of the language; such a language has manual
propagation.  In contrast, a language where control implicitly
jumps from the original error site to the proper handler has
automatic propagation.






Kinds of error

What is an error?  There may be many different possible error
conditions in a program, but they can be categorized into several
kinds based on how programmers should be expected to react to them.
Since the programmer is expected to react differently, and since the
language is the tool of the programmer’s reaction, it makes sense for
each group to be treated differently in the language.

To be clear, in many cases the kind of error reflects a conscious
decision by the author of the error-producing code, and different
choices might be useful in different contexts.  The example I’m going
to use of a “simple domain error” could easily be instead treated as a
“recoverable error” (if the author expected automatic propagation to
be more useful than immediate recovery) or even a “logic failure” (if
the author wished to prevent speculative use, e.g. if checking the
precondition was very expensive).

In order of increasing severity and complexity:


Simple domain errors

A simple domain error is something like calling String.toInt() on a
string that isn’t an integer.  The operation has an obvious
precondition about its arguments, but it’s useful to be able to pass
other values to test whether they’re okay.  The client will often
handle the error immediately.

Conditions like this are best modeled with an optional return value.
They don’t benefit from a more complex error-handling model, and using
one would make common code unnecessarily awkward.  For example,
speculatively trying to parse a String as an integer in Java
requires catching an exception, which is far more syntactically
heavyweight (and inefficient without optimization).

Because Swift already has good support for optionals, these conditions
do not need to be a focus of this proposal.




Recoverable errors

Recoverable errors include file-not-found, network timeouts, and
similar conditions.  The operation has a variety of possible error
conditions.  The client should be encouraged to recognize the
possibility of the error condition and consider the right way to
handle it.  Often, this will be by aborting the current operation,
cleaning up after itself if needed, and propagating the error to a
point where it can more sensibly be handled, e.g. by reporting it to
the user.

These are the error conditions that most of our APIs use NSError and
CFError for today.  Most libraries have some similar notion.  This
is the focus of this proposal.




Universal errors

The difference between universal errors and ordinary recoverable
errors is less the kind of error condition and more the potential
sources of the error in the language.  An error is universal if it
could arise from such a wealth of different circumstances that it
becomes nearly impracticable for the programmer to directly deal with
all the sources of the error.

Some conditions, if they are to be brought into the scope of
error-handling, can only conceivably be dealt with as universal
errors.  These include:


	Asynchronous conditions, like the process receiving a SIGINT, or
the current thread being cancelled by another thread.  These
conditions could, in principle, be delivered at an arbitrary
instruction boundary, and handling them appropriately requires
extraordinary care from the programmer, the compiler, and the
runtime.

	Ubiquitous errors, like running out of memory or overflowing the
stack, that essentially any operation can be assumed to potentially
do.



But other kinds of error condition can essentially become universal
errors with the introduction of abstraction.  Reading the size of a
collection, or reading a property of an object, is not an operation
that a programmer would normally expect to produce an error.  However,
if the collection is actually backed by a database, the database query
might fail.  If the user must write code as if any opaque abstraction
might produce an error, they are stuck in the world of universal
errors.

Universal errors mandate certain language approaches.  Typed
propagation of universal errors is impossible, other than special
cases which can guarantee to not produce errors.  Marked propagation
would provoke a user revolt.  Propagation must be automatic, and the
implementation must be “zero-cost”, or as near to it as possible,
because checking for an error after every single operation would be
prohibitive.

For these reasons, in our APIs, universal error conditions are usually
implemented using Objective-C exceptions, although not all uses of
Objective-C exceptions fall in this category.

This combination of requirements means that all operations must be
implicitly “unwindable” starting from almost any call site it makes.
For the stability of the system, this unwinding process must restore
any invariants that might have been temporarily violated; but the
compiler cannot assist the programmer in this.  The programmer must
consciously recognize that an error is possible while an invariant is
broken, and they must do this proactively — that, or track it down
when they inevitably forget.  This requires thinking quite rigorously
about one’s code, both to foresee all the error sites and to recognize
that an important invariant is in flux.

How much of a problem this poses depends quite a lot on the code being
written.  There are some styles of programming that make it pretty
innocuous.  For example, a highly functional program which
conscientiously kept mutation and side-effects to its outermost loops
would naturally have very few points where any invariants were in
flux; propagating an error out of an arbitrary place within an
operation would simply abandon all the work done up to that point.
However, this happy state falls apart quite quickly the more that
mutation and other side-effects come into play.  Complex mutations
cannot be trivially reversed.  Packets cannot be unsent.  And it would
be quite amazing for us to assert that code shouldn’t be written that
way, understanding nothing else about it.  As long as programmers do
face these issues, the language has some responsibility to help them.

Therefore, in my judgement, promoting the use of universal errors is
highly problematic.  They undermine the easy comprehension of code,
and they undermine the language’s ability to help the programmer
reason about errors.  This design will instead focus on explicitly
trackable errors of the sort that NSError is used for today on Apple
platforms.

However, there are some important reasons not to rule out universal
errors completely:


	They remain the only viable means of bringing certain error
conditions into the error-handling model, as discussed above.  Of
these, most run into various objections; the most important
remaining use case is “escaping”, where an unexpected implementation
of an API that was not designed to throw finds itself needing to.

	Objective-C and C++ exceptions are a legitimate interoperation
problem on any conceivable platform Swift targets.  Swift must have
some sort of long-term answer for them.



These reasons don’t override the problems with universal errors.  It
is inherently dangerous to implicitly volunteer functions for
unwinding from an arbitrary point.  We don’t want to promote this
model.  However, it is certainly possible to write code that handles
universal errors correctly; and pragmatically, unwinding through most
code will generally just work.  Swift could support a secondary,
untyped propagation mechanism using “zero-cost” exceptions.  Code can
be written carefully to minimize the extent of implicit unwinding,
e.g. by catching universal errors immediately after calling an
“escaping” API and rethrowing them with normal typed propagation.

However, this work is outside of the scope of Swift 2.0.  We can
comfortably make this decision because doing so doesn’t lock us out of
implementing it in the future:


	We do not currently support propagating exceptions through Swift
functions, so changing catch to catch them as well would not be
a major compatibility break.

	With some admitted awkwardness, external exceptions can be reflected
into an ErrorType - like model automatically by the catch
mechanism.

	In the meanwhile, developers who must handle an Objective-C
exception can always do so by writing a stub in Objective-C to
explicitly “bridge” the exception into an NSError out parameter.
This isn’t ideal, but it’s acceptable.






Logic failures

The final category is logic failures, including out of bounds array
accesses, forced unwrap of nil optionals, and other kinds of
assertions.  The programmer has made a mistake, and the failure should
be handled by fixing the code, not by attempting to recover
dynamically.

High-reliability systems may need some way to limp on even after an
assertion failure.  Tearing down the process can be viewed as a vector
for a denial-of-service attack.  However, an assertion failure might
indicate that the process has been corrupted and is under attack, and
limping on anyway may open the system up for other, more serious forms
of security breach.

The correct handling of these error conditions is an open question and
is not a focus of this proposal.  Should we decide to make them
recoverable, they will likely follow the same implementation mechanism
as universal errors, if not necessarily the same language rules.








Analysis

Let’s take a deeper look into the different dimensions of
error-handling I laid out above.


Propagation methods

At a language level, there are two basic ways an error can be
propagated from an error site to something handling it.

The first is that it can be done with the normal evaluation, data
flow, and control flow processes of the language; let’s call this
manual propagation.  Here’s a good example of manual propagation
using special return values in an imperative language, C:

struct object *read_object(void) {
  char buffer[1024];
  ssize_t numRead = read(0, buffer, sizeof(buffer));
  if (numRead < 0) return NULL;
  ...
}





Here’s an example of manual propagation of an error value through
out-parameters in another imperative language, Objective-C:

- (BOOL) readKeys: (NSArray<NSString*>**) strings error: (NSError**) err {
  while (1) {
    NSString *key;
    if ([self readKey: &key error: err]) {
      return TRUE;
    }
    ...
  }
  ...
}





Here’s an example of manual propagation using an ADT in an impure
functional language, SML; it’s somewhat artificial because the SML
library actually uses exceptions for this:

fun read_next_cmd () =
  case readline(stdin) of
    NONE => NONE
  | SOME line => if ...





All of these excerpts explicitly test for errors using the language’s
standard tools for data flow and then explicitly bypass the evaluation
of the remainder of the function using the language’s standard tools
for control flow.

The other basic way to propagate errors is in some hidden, more
intrinsic way not directly reflected in the ordinary control flow
rules; let’s call this automatic propagation.  Here’s a good
example of automatic propagation using exceptions in an imperative
language, Java:

String next = readline();





If readline encounters an error, it throws an exception; the
language then terminates scopes until it dynamically reaches a try
statement with a matching handler.  Note the lack of any code at all
implying that this might be happening.

The chief disadvantages of manual propagation are that it’s tedious to
write and requires a lot of repetitive boilerplate.  This might sound
superficial, but these are serious concerns.  Tedium distracts
programmers and makes them careless; careless error-handling code can
be worse than useless.  Repetitive boilerplate makes code less
readable, hurting maintainability; it occupies the programmer’s time,
creating opportunity costs; it discourages handling errors well by
making it burdensome to handle them at all; and it encourages
shortcuts (such as extensive macro use) which may undermine other
advantages and goals.

The chief disadvantage of automatic propagation is that it obscures
the control flow of the code.  I’ll talk about this more in the next
section.

Note that automatic propagation needn’t be intrinsic in a language.
The propagation is automatic if it doesn’t correspond to visible
constructs in the source.  This effect can be duplicated as a library
with any language facility that allows restructuring of code
(e.g. with macros or other term-rewriting facilities) or overloading
of basic syntax (e.g. Haskell mapping its do notation onto monads).

Note also that multiple propagation strategies may be “in play” for
any particular program.  For example, Java generally uses exceptions
in its standard libraries, but some specific APIs might opt to instead
return null on error for efficiency reasons.  Objective-C provides a
fairly full-featured exceptions model, but the standard APIs (with a
few important exceptions) reserve them solely for unrecoverable
errors, preferring manual propagation with NSError out-parameters
instead.  Haskell has a large number of core library functions which
return Maybe values to indicate success or error, but it also offers
at least two features resembling traditional,
automatically-propagating exceptions (the ErrorT monad transform and
exceptions in the IO monad).

So, while I’m going to talk as if languages implement a single
propagation strategy, it should be understood that reality will always
be more complex.  It is literally impossible to prevent programmers
from using manual propagation if they want to.  Part of the proposal
will discuss using multiple strategies at once.




Marked propagation

Closely related to the question of whether propagation is manual or
automatic is whether it is marked or unmarked.  Let’s say that a
language uses marked propagation if there is something at the
call site which indicates that propagation is possible from that
point.

To a certain extent, every language using manual propagation uses
marked propagation, since the manual code to propagate the error
approximately marks the call which generated the error.  However, it
is possible for the propagation logic to get separated from the call.

Marked propagation is at odds with one other major axis of language
design: a language can’t solely use marked propagation if it ever
performs implicit operations that can produce errors.  For example, a
language that wanted out-of-memory conditions to be recoverable errors
would have to consider everything that could allocate memory to a
source of propagation; in a high-level language, that would include a
large number of implicit operations.  Such a language could not claim
to use marked propagation.

The reason this all matters is because unmarked propagation is a
pretty nasty thing to end up with; it makes it impossible to directly
see what operations can produce errors, and therefore to directly
understand the control flow of a function.  This leaves you with two
options as a programmer:


	You can carefully consider the actual dynamic behavior of every
function called by your function.

	You can carefully arrange your function so that there are no
critical sections where an universal error can leave things in an
unwanted state.



There are techniques for making the second more palatable.  Chiefly,
they involve never writing code that relies on normal control flow to
maintain invariants and clean up after an operation; for example,
always using constructors and destructors in C++ to manage resources.
This is compulsory in C++ with exceptions enabled because of the
possibility of implicit code that can throw, but it could
theoretically be used in other languages.  However, it still requires
a fairly careful and rigorous style of programming.

It is possible to imagine a marked form of automatic propagation,
where the propagation itself is implicit except that (local)
origination points have to be explicitly marked.  This is part of our
proposal, and I’ll discuss it below.




Typed propagation

The next major question is whether error propagation is explicitly
tracked and limited by the language.  That is, is there something
explicitly in the declaration of a function that tells the
programmer whether it can produce errors?  Let’s call this typed
propagation.


Typed manual propagation

Whether propagation is typed is somewhat orthogonal to whether it’s
manual or marked, but there are some common patterns.  The most
dominant forms of manual propagation are all typed, since they pass
the failure out of the callee, either as a direct result or in an
out-parameter.

Here’s another example of an out-parameter:

- (instancetype)initWithContentsOfURL:(NSURL *)url encoding:(NSStringEncoding)enc error:(NSError **)error;





Out-parameters have some nice advantages.  First, they’re a reliable
source of marking; even if the actual propagation gets separated from
the call, you can always detect a call that can generate errors as
long as its out-parameter has a recognizable name.  Second, some of
the boilerplate can be shared, because you can use the same variable
as an out-parameter multiple times; unfortunately, you can’t use this
to “cheat” and only check for an error once unless you have some
conventional guarantee that later calls won’t spuriously overwrite the
variable.

A common alternative in functional languages is to return an Either
type:

trait Writer {
  fn write_line(&mut self, s: &str) -> Result<(), IoError>;
}





This forces the caller to deal with the error if they want to use the
result.  This works well unless the call does not really have a
meaningful result (as write_line does not); then it depends on
whether language makes it easy to accidentally ignore results.  It
also tends to create a lot of awkward nesting:

fn parse_two_ints_and_add_them() {
  match parse_int() {
    Err e => Err e
    Ok x => match parse_int() {
      Err e => Err e
      Ok y => Ok (x + y)
    }
  }
}





Here, another level of nesting is required for every sequential
computation that can fail.  Overloaded evaluation syntax like
Haskell’s do notation would help with both of these problems, but
only by switching to a kind of automatic propagation.

Manual propagation can be untyped if it occurs through a side channel.
For example, consider an object which set a flag on itself when it
encountered an error instead of directly returning it; or consider a
variant of POSIX which expected you to separately check errno to see
if a particular system call failed.




Typed automatic propagation

Languages with typed automatic propagation vary along several
dimensions.


The default typing rule

The most important question is whether you opt in to producing errors
or opt out of them.  That is, is a function with no specific
annotation able to produce errors or not?

The normal resilience guideline is that you want the lazier option to
preserve more flexibility for the implementation.  A function that can
produce errors is definitely more flexible, since it can do more
things.  Contrariwise, changing a function that doesn’t produce errors
into a function that does clearly changes its contract in ways that
callers need to respond to.  Unfortunately, this has some unpleasant
consequences:


	Marked propagation would become very burdensome.  Every call would
involve an annotation, either on the function (to say it cannot
generate errors) or on the call site (to mark propagation).  Users
would likely rebel against this much bookkeeping.

	Most functions cannot generate recoverable errors in the way I’ve
defined that.  That is, ignoring sources of universal errors, most
functions can be reasonably expected to not be able to produce
errors.  But if that’s not the default state, that means that most
functions would need annotations; again, that’s a lot of tedious
bookkeeping.  It’s also a lot of clutter in the API.

	Suppose that you notice that a function incorrectly lacks an
annotation. You go to fix it, but you can’t without annotating all
of the functions it calls, ad infinitum; like const correctness in
C++, the net effect is to punish conscientious users for trying to
improve their code.

	A model which pretends that every function is a source of errors is
likely to be overwhelming for humans.  Programmers ought to think
rigorously about their code, but expecting them to also make
rigorous decisions about all the code their code touches is probably
too much.  Worse, without marked propagation, the compiler can’t
really help the programmer concentrate on the known-possible sources
of error.

	The compiler’s analysis for code generation has to assume that all
sorts of things can produce errors when they really can’t.  This
creates a lot of implicit propagation paths that are actually 100%
dead, which imposes a serious code-size penalty.



The alternative is to say that, by default, functions are not being
able to generate errors.  This agrees with what I’m assuming is the
most common case.  In terms of resilience, it means expecting users to
think more carefully about which functions can generate errors before
publishing an API; but this is similar to how Swift already asks them
to think carefully about types.  Also, they’ll have at least added the
right set of annotations for their initial implementation.  So I
believe this is a reasonable alternative.




Enforcement

The next question is how to enforce the typing rules that prohibit
automatic propagation.  Should it be done statically or dynamically?
That is, if a function claims to not generate errors, and it calls a
function that generates errors without handling the error, should that
be a compiler error or a runtime assertion?

The only real benefit of dynamic enforcement is that it makes it
easier to use a function that’s incorrectly marked as being able to
produce errors.  That’s a real problem if all functions are assumed to
produce errors by default, because the mistake could just be an error
of omission.  If, however, functions are assumed to not produce
errors, then someone must have taken deliberate action that introduced
the mistake.  I feel like the vastly improved static type-checking is
worth some annoyance in this case.

Meanwhile, dynamic enforcement undermines most of the benefits of
typed propagation so completely that it’s hardly worth considering.
The only benefit that really remains is that the annotation serves as
meaningful documentation.  So for the rest of this paper, assume that
typed propagation is statically enforced unless otherwise indicated.




Specificity

The last question is how specific the typing should be: should a
function be able to state the specific classes of errors it produces,
or should the annotation be merely boolean?

Experience with Java suggests that getting over-specific with
exception types doesn’t really work out for the best.  It’s useful to
be able to recognize specific classes of error, but libraries
generally want to reserve flexibility about the exact kind of error
they produce, and so many errors just end up falling into broad
buckets.  Different libraries end up with their own library-specific
general error classes, and exceptions list end up just restating the
library’s own dependencies or wrapping the underlying errors in ways
that loses criticial information.






Tradeoffs of typed propagation

Typed propagation has a number of advantages and disadvantages, mostly
independent of whether the propagation is automatic.

The chief advantage is that it is safer.  It forces programmers to do
something to handle or propagate errors.  That comes with some
downsides, which I’ll talk about, but I see this as a fairly core
static safety guarantee.  This is especially important in an
environment where shuttling operations between threads is common,
since it calls out the common situation where an error needs to
propagate back to the originating thread somehow.

Even if we’re settled on using typed propagation, we should be aware
of the disadvantages and investigate ways to ameliorate them:


	Any sort of polymorphism gets more complicated, especially
higher-order functions.  Functions which cannot generate errors are
in principle subtypes of functions which can.  But:
	Composability suffers.  A higher-order function must decide
whether its function argument is allowed to generate errors.  If
not, the function may be significantly limiting its usability, or
at least making itself much more difficult to use with
error-generating functions.  If so, passing a function that does
not may require a conversion (an awkward explicit one if using
manual propagation), and the result of the call will likely claim
to be able to generate errors when, in fact, it cannot.  This can
be solved with overloads, but that’s a lot of boilerplate and
redundancy, especially for calls that take multiple functions
(like the function composition operator).

	If an implicit conversion is allowed, it may need to introduce
thunks.  In some cases, these thunks would be inlineable —
except that, actually, it is quite useful for code to be able to
reverse this conversion and dynamically detect functions that
cannot actually generate errors.  For example, an algorithm might
be able to avoid some unnecessary bookkeeping if it knows that its
function argument never fails.  This poses some representation
challenges.





	It tends to promote decentralized error handling instead of letting
errors propagate to a level that actually knows how to handle them.
	Some programmers will always be tempted to incorrectly pepper
their code with handlers that just swallow errors instead of
correctly propagating them to the right place.  This is often
worse than useless; it would often be better if the error just
propagated silently, because the result can be a system in an
inconsistent state with no record of why.  Good language and
library facilities for propagating errors can help avoid this,
especially when moving actions between threads.

	There are many situations where errors are not actually possible
because the programmer has carefully restricted the input.  For
example, matching :code:/[0-9]{4}/ and then parsing the result
as an integer.  It needs to be convenient to do this in a context
that cannot actually propagate errors, but the facility to do this
needs to be carefully designed to discourage use for swallowing
real errors.  It might be sufficient if the facility does not
actually swallow the error, but instead causes a real failure.

	It is possible that the ease of higher-order programming in Swift
might ameliorate many of these problems by letting users writing
error-handling combinators.  That is, in situations where a lazy
Java programmer would find themselves writing a try/catch to
swallow an exception, Swift would allow them to do something more
correct with equal convenience.







One other minor advantage of marked, statically-enforced typed
propagation: it’s a boon for certain kinds of refactoring.
Specifically, when a refactor makes an operation error-producing when
it wasn’t before, the absence of any those properties makes the
refactor more treacherous and increases the odds of accidentally
introducing a bug.  If propagation is untyped, or the typing isn’t
statically enforced, the compiler isn’t going to help you at all to
find call sites which need to have error-checking code.  Even with
static typed propagation, if the propagation isn’t marked specifically
on the call site, the compiler won’t warn you about calls made from
contexts that can handle or implicitly propagate the error.  But if
all these things are true, the compiler will force you to look at all
the existing call sites individually.






Error Types

There are many kinds of error.  It’s important to be able to recognize
and respond to specific error causes programmatically.  Swift should
support easy pattern-matching for this.

But I’ve never really seen a point to coarser-grained categorization
than that; for example, I’m not sure how you’re supposed to react to
an arbitrary, unknown IO error.  And if there are useful error
categories, they can probably be expressed with predicates instead of
public subclasses.  I think we start with a uni-type here and then
challenge people to come up with reasons why they need anything more.




Implementation design

There are several different common strategies for implementing
automatic error propagation.  (Manual propagation doesn’t need special
attention in the implementation design.)

The implementation has two basic tasks common to most languages:


	Transferring control through scopes and functions to the appropriate
handler for the error.

	Performing various semantic “clean up” tasks for the scopes that
were abruptly terminated:
	tearing down local variables, like C++ variables with
destructors or strong/weak references in ARC-like languages;

	releasing heap-allocated local variables, like captured variables
in Swift or __block variables in ObjC;

	executing scope-specific termination code, like C#’s using or
Java/ObjC’s synchronized statements; and

	executing ad hoc cleanup blocks, like finally blocks in Java
or defer actions in Swift.







Any particular call frame on the stack may have clean-ups or potential
handlers or both; call these interesting frames.


Implicit manual propagation

One strategy is to implicitly produce code to check for errors and
propagate them up the stack, imitating the code that the programmer
would have written under manual propagation.  For example, a function
call could return an optional error in a special result register; the
caller would check this register and, if appropriate, unwind the stack
and return the same value.

Since propagation and unwinding are explicit in the generated code,
this strategy hurts runtime performance along the non-error path more
than the alternatives, and more code is required to do the explicitly
unwinding.  Branches involved in testing for errors are usually very
easy to predict, so in hot code the direct performance impact is quite
small, and the total impact is dominated by decreased code locality.
Code can’t always be hot, however.

These penalties are suffered even by uninteresting frames unless they
appear in tail position.  (An actual tail call isn’t necessary; there
just can’t be anything that error propagation would skip.)  And
functions must do some added setup work before returning.

The upside is that the error path suffers no significant penalties
beyond the code-size impact.  The code-size impact can be significant,
however: there is sometimes quite a lot of duplicate code needed for
propagation along the error path.

This approach is therefore relatively even-handed about the error
vs. the non-error path, although it requires some care in order to
minimize code-size penalties for parallel error paths.




setjmp / longmp

Another strategy to is to dynamically maintain a thread-local stack of
interesting frames.  A function with an interesting frame must save
information about its context in a buffer, like setjmp would, and
then register that buffer with the runtime.  If the scope returns
normally, the buffer is accordingly unregistered.  Starting
propagation involves restoring the context for the top of the
interesting-frames stack; the place where execution returns is called
the “landing pad”.

The advantage of this is that uninteresting frames don’t need to do
any work; context restoration just skips over them implicitly.  This
is faster both for the error and non-error paths.  It is also possible
to optimize this strategy so that (unlike setjmp) the test for an
error is implicitly elided: use a slightly different address for the
landing pad, so that propagating errors directly restore to that
location.

The downside is that saving the context and registering the frame are
not free:


	Registering the frame requires an access to thread-local state,
which on our platforms means a function call because we’re not
willing to commit to anything more specific in the ABI.

	Jumping across arbitary frames invalidates the callee-save
registers, so the registering frame must save them all eagerly.  In
calling conventions with many callee-save registers, this can be
very expensive.  However, this is only necessary when it’s possible
to resume normal execution from the landing pad: if the landing pad
only has clean-ups and therefore always restarts propagation, those
registers will have been saved and restored further out.

	Languages like C++, ObjC ARC, and Swift that have non-trivial
clean-ups for many local variables tend to have many functions with
interesting frames.  This means both that the context-saving
penalties are higher and that skipping uninteresting frames is a
less valuable optimization.

	By the same token, functions in those languages often have many
different clean-ups and/or handlers.  For example, every new
non-trivial variable might introduce a new clean-up.  The function
must either register a new landing pad for each clean-up (very
expensive!) or track its current position in a way that a
function-wide landing pad can figure out what scope it was in.



This approach can be hybridized with the unwinding approach below so
that the interesting-frames stack abstractly describes the clean-ups
in the frame instead of just restoring control somewhere and expecting
the frame to figure it out.  This can decrease the code size impact
significantly for the common case of frames that just need to run some
clean-ups before propagating the error further.  It may even
completely eliminate the need for a landing pad.

The ObjC/C++ exceptions system on iOS/ARM32 is kindof like that
hybrid.  Propagation and clean-up code is explicit in the function,
but the registered context includes the “personality” information from
the unwinding tables, which makes the decision whether to land at the
landing pad at all.  It also uses an optimized setjmp implementation
that both avoids some context-saving and threads the branch as
described above.

The ObjC exceptions system on pre-modern runtimes (e.g. on PPC and
i386) uses the standard setjmp / longjmp functions.  Every
protected scope saves the context separately.  This is all implemented
in a very unsafe way that does not behave well in the presence of
inlining.

Overall, this approach requires a lot of work in the non-error path
of functions with interesting frames.  Given that we expects functions
with interesting frames to be very common in Swift, this is not
an implementation approach we would consider in the abstract.  However,
it is the implementation approach for C++/ObjC exceptions on iOS/ARM32,
so we need to at least interoperate with that.




Table-based unwinding

The final approach is side-table stack unwinding.  This relies on
being able to accurately figure out how to unwind through an arbitrary
function on the system, given only the return address of a call it
made and the stack pointer at that point.

On our system, this proceeds as follows.  From an instruction pointer,
the system unwinder looks up what linked image (executable or dylib)
that function was loaded from.  The linked image contains a special
section, a table of unwind tables indexed by their offset within the
linked image.  Every non-leaf function should have an entry within
this table, which provides sufficient information to unwind the
function from an arbitrary call site.

This lookup process is quite expensive, especially since it has to
repeat all the way up the stack until something actually handles the
error.  This makes the error path extremely slow.  However, no
explicit setup code is required along the non-error path, and so this
approach is sometimes known as “zero-cost”.  That’s something of a
misnomer, because it does have several costs that can affect non-error
performance.  First, there’s a small amount of load-time work required
in order to resolve relocations to symbols used by the unwind tables.
Second, the error path often requires code in the function, which can
decrease code locality even if never executed.  Third, the error path
may use information that the non-error path would otherwise discard.
And finally, the unwind tables themselves can be fairly large,
although this is generally only a binary-size concern because they are
carefully arranged to not need to be loaded off of disk unless an
exception is thrown.  But overall, “zero-cost” is close enough to
correct.

To unwind a frame in this sense specifically means:


	Deciding whether the function handles the error.

	Cleaning up any interesting scopes that need to be broken down
(either to get to the handler or to leave the function).

	If the function is being fully unwound, restoring any callee-save
registers which the function might have changed.



This is language-specific, and so the table contains language-specific
“personality” information, including a reference to a function to
interpret it.  This mechanism means that the unwinder is extremely
flexible; not only can it support arbitrary languages, but it can
support different language-specific unwinding table layouts for the
same language.

Our current personality records for C++ and Objective-C contain just
enough information to decide (1) whether an exception is handled by
the frame and (2) if not, whether a clean-up is currently active.  If
either is true, it restores the context of a landing pad, which
manually executes the clean-ups and enters the handler.  This approach
generally needs as much code in the function as implicit manual
propagation would.  However, we could optimize this for many common
cases by causing clean-ups to be called automatically by the
interpretation function.  That is, instead of a landing pad that looks
notionally like this:

void *exception = ...;
SomeCXXType::~SomeCXXType(&foo);
objc_release(bar);
objc_release(baz);
_Unwind_Resume(exception);





The unwind table would have a record that looks notionally like this:

CALL_WITH_FRAME_ADDRESS(&SomeCXXType::~SomeCXXType, FRAME_OFFSET_OF(foo))
CALL_WITH_FRAME_VALUE(&objc_release, FRAME_OFFSET_OF(bar))
CALL_WITH_FRAME_VALUE(&objc_release, FRAME_OFFSET_OF(baz))
RESUME





And no code would actually be needed in the function.  This would
generally slow the error path down, because the interpretation
function would have to interpret this mini-language, but it would move
all the overhead out of the function and into the error table, where
it would be more compact.

This is something that would also benefit C++ code.






Clean-up actions

Many languages have a built-in language tool for performing arbitrary
clean-up when exiting a scope.  This has two benefits.  The first is
that, even ignoring error propagation, it acts as a “scope guard”
which ensures that the clean-up is done if the scope is exited early
due to a return, break, or continue statement; otherwise, the
programmer must carefully duplicate the clean-up in all such places.
The second benefit is that it makes clean-up tractable in the face of
automatic propagation, which creates so many implicit paths of control
flow out of the scope that expecting the programmer to cover them all
with explicit catch-and-rethrow blocks would be ridiculous.

There’s an inherent tension in these language features between putting
explicit clean-up code in the order it will be executed and putting it
near the code it’s cleaning up after.  The former means that a
top-to-bottom read of the code tells you what actions are being
performed when; you don’t have to worry about code implicitly
intervening at the end of a scope.  The latter makes it easy to verify
at the point that a clean-up is needed that it will eventually happen;
you don’t need to scan down to the finally block and analyze what
happens there.


finally

Java, Objective-C, and many other languages allow try statements to
take a finally clause.  The clause is an ordinary scope and may take
arbitrary actions.  The finally clause is performed when the
preceding controlled scopes (including any catch clauses) are exited
in any way: whether by falling off the end, directly branching or
returning out, or throwing an exception.

finally is a rather awkward and verbose language feature.  It
separates the clean-up code from the operation that required it
(although this has benefits, as discussed above).  It adds a lot of
braces and indentation, so edits that add new clean-ups can require a
lot of code to be reformatted.  When the same scope needs multiple
clean-ups, the programmer must either put them in the same finally
block (and thus create problems with clean-ups that might terminate
the block early) or stack them up in separate blocks (which can really
obscure the otherwise simple flow of code).




defer

Go provides a defer statement that just enqueues arbitrary code to
be executed when the function exits.  (More details of this appear in
the survey of Go.)

This allows the defer action to be written near the code it
“balances”, allowing the reader to immediately see that the required
clean-up will be done (but this has drawbacks, as discussed above).
It’s very compact, which is nice as most defer actions are short.  It
also allow multiple actions to pile up without adding awkward nesting.
However, the function-exit semantics exacerbate the problem of
searching for intervening clean-up actions, and they introduce
semantic and performance problems with capturing the values of local
variables.




Destructors

C++ allows types to define destructor functions, which are called when
a function goes out of scope.

These are often used directly to clean up the ownership or other
invariants on the type’s value.  For example, an owning-pointer type
would free its value in its destructor, whereas a hash-table type
would destroy its entries and free its buffer.

But they are also often used idiomatically just for the implicit
destructor call, as a “scope guard” to ensure that something is done
before the current operation completes.  For an example close to my
own heart, a compiler might use such a guard when parsing a local
scope to ensure that new declarations are removed from the scope
chains even if the function exits early due to a parse error.
Unfortunately, since type destructors are C++’s only tool for this
kind of clean-up, introducing ad-hoc clean-up code requires defining a
new type every time.

The unique advantage of destructors compared to the options above is
that destructors can be tied to temporary values created during the
evaluation of an expression.

Generally, a clean-up action becomes necessary as the result of some
“acquire” operation that occurs during an expression.  defer and
finally do not take effect until the next statement is reached,
which creates an atomicity problem if code can be injected after the
acquire.  (For finally, this assumes that the acquire appears
before the try.  If instead the acquire appears within the
try, there must be something which activates the clean-up, and that
has the same atomicity problem.)

In contrast, if the acquire operation always creates a temporary with
a destructor that does the clean-up, the language automatically
guarantees this atomicity.  This pattern is called “resource
acquisition is initialization”, or “RAII”.  Under RAII, all resources
that require clean-up are carefully encapsulated within types with
user-defined destructors, and the act of constructing an object of
that type is exactly the act of acquiring the underlying resource.

Swift does not support user-defined destructors on value types, but it
does support general RAII-like programming with class types and
deinit methods, although (at the moment) the user must take special
care to keep the object alive, as Swift does not normally guarantee
the destruction order of objects.

RAII is very convenient when there’s a definable “resource” and
somebody’s already wrapped its acquisition APIs to return
appropriately-destructed objects.  For other tasks, where a reasonable
programmer might balk at defining a new type and possibly wrapping an
API for a single purpose, a more ad hoc approach may be warranted.








Survey


C

C doesn’t really have a consensus error-handling scheme.  There’s a
built-in unwinding mechanism in setjmp and longjmp, but it’s
disliked for a host of good reasons.  The dominant idiom in practice
is for a function to encode failure using some unreasonable value for
its result, like a null pointer or a negative count.  The bad value(s)
are often function-specific, and sometimes even argument- or
state-specific.

On the caller side, it is unfortunately idiomatic (in some codebases)
to have a common label for propagating failure at the end of a
function (hence goto fail); this is because there’s no inherent
language support for ensuring that necessary cleanup is done before
propagating out of a scope.




C++

C++ has exceptions.  Exceptions can have almost any type in the
language.  Propagation typing is tied only to declarations; an
indirect function pointer is generally assumed to be able to throw.
Propagation typing used to allow functions to be specific about the
kinds of exceptions they could throw (:code:throws
(std::exception)), but this is deprecated in favor of just indicating
whether a function can throw (:code:noexcept(false)).

C++ aspires to making out-of-memory a recoverable condition, and so
allocation can throw.  Therefore, it is essentially compulsory for the
language to assume that constructors might throw.  Since constructors
are called pervasively and implicitly, it makes sense for the default
rule to be that all functions can throw.  Since many error sites are
implicit, there is little choice but to use automatic unmarked
propagation.  The only reasonable way to clean up after a scope in
such a world is to allow the compiler to do it automatically.  C++
programmers therefore rely idiomatically on a pattern of shifting all
scope cleanup into the destructors of local variables; sometimes such
local values are created solely to set up a cleanup action in this
way.

Different error sites occur with a different set of cleanups active,
and there are a large number of such sites.  In fact, prior to C++11,
compilers were forced to assume by default that destructor calls could
throw, so cleanups actually created more error sites.  This all adds
up to a significant code-size penalty for exceptions, even in projects
which don’t directly use them and which have no interest in recovering
from out-of-memory conditions.  For this reason, many C++ projects
explicitly disable exceptions and rely on other error propagation
mechanisms, on which there is no widespread consensus.




Objective C

Objective C has a first-class exceptions mechanism which is similar in
feature set to Java’s: @throw / @try / @catch / @finally.
Exception values must be instances of an Objective-C class.  The
language does a small amount of implicit frame cleanup during
exception propagation: locks held by @synchronized are released,
stack copies of __block variables are torn down, and ARC __weak
variables are destroyed.  However, the language does not release
object pointers held in local variables, even (by default) under ARC.

Objective C exceptions used to be implemented with setjmp,
longjmp, and thread-local state managed by a runtime, but the only
surviving platform we support which does that is i386, and all others
now use a “zero-cost” implementation that interoperates with C++
exceptions.

Objective C exceptions are mostly only used for unrecoverable
conditions, akin to what I called “failures” above.  There are a few
major exceptions to this rule, where APIs that do use exceptions to
report errors.

Instead, Objective C mostly relies on manual propagation,
predominantly using out-parameters of type NSError**.  Whether the
call failed is usually not indicated by whether a non-nil error
was written into this parameter; calls are permitted both to succeed
and write an error object into the parameter (which should be ignored)
and to report an error without creating an actual error object.
Instead, whether the call failed is reported in the formal return
value.  The most common convention is for a false BOOL result or
null object result to mean an error, but ingenious programmers have
come up with many other conventions, and there do exist APIs where a
null object result is valid.

CF APIs, meanwhile, have their own magnificent set of somewhat
inconsistent conventions.

Therefore, we can expect that incrementally improving CF / Objective C
interoperation is going to be a long and remarkably painful process.




Java

Java has a first-class exceptions mechanism with unmarked automatic
propagation: throw / try / catch / finally.  Exception values
must be instances of something inheriting from Throwable.
Propagation is generally typed with static enforcement, with the
default being that a call cannot throw exceptions except for
subclasses of Error and RuntimeException.  The original intent was
that these classes would be used for catastrophic runtime errors
(Error) and programming mistakes caught by the runtime
(RuntimeException), both of which we would classify as unrecoverable
failures in our scheme; essentially, Java attempts to promote a fully
statically-enforced model where truly catastrophic problems can still
be handled when necessary.  Unfortunately, these motivations don’t
seem to have been communicated very well to developers, and the result
is kindof a mess.

Java allows methods to be very specific about the kinds of exception
they throw.  In my experience, exceptions tend to fall into two
categories:


	There are some very specific exception kinds that callers know to
look for and handle on specific operations.  Generally these are
obvious, predictable error conditions, like a host name not
resolving, or like a string not being formatted correctly.

	There are also a lot of very vague, black-box exception kinds that
can’t really be usefully responded to.  For example, if a method
throws IOException, there’s really nothing a caller can do except
propagate it and abort the current operation.



So specific typing is useful if you can exhaustively handle a small
number of specific failures.  As soon as the exception list includes
any kind of black box type, it might as well be a completely open set.




C#

C#’s model is almost exactly like Java’s except that it is untyped:
all methods are assumed to be able to throw.  For this reason, it also
has a simpler type hierarchy, where all exceptions just inherit from
Exception.

The rest of the hierarchy doesn’t really make any sense to me. Many
things inherit directly from Exception, but many other things
inherit from a subclass called SystemException. SystemException
doesn’t seem to be any sort of logical grouping: it includes all the
runtime-assertion exceptions, but it also includes every exception
that’s thrown anywhere in the core library, including XML and IO
exceptions.

C# also has a using statement, which is useful for binding something
over a precise scope and then automatically disposing it on all paths.
It’s just built on top of try / finally.




Haskell

Haskell provides three different common error-propagation mechanisms.

The first is that, like many other functional languages, it supports
manual propagation with a Maybe type.  A function can return None
to indicate that it couldn’t produce a more useful result.  This is
the most common failure method for functions in the functional subset
of the library.

The IO monad also provides true exceptions with unmarked automatic
propagation.  These exceptions can only be handled as an IO action,
but are otherwise untyped: there is no way to indicate whether an IO
action can or cannot throw.  Exceptions can be thrown either as an
IO action or as an ordinary lazy functional computation; in the
latter case, the exception is only thrown if the computation is
evaluated for some reason.

The ErrorT monad transform provides typed automatic propagation.  In
an amusing twist, since the only native computation of ErrorT is
throwError, and the reason to write a computation specifically in
ErrorT is if it’s throwing, and every other computation must be
explicitly lifted into the monad, ErrorT effectively uses marked
propagation by omission, since everything that can’t throw is
explicitly marked with a lift:

prettyPrintShiftJIS :: ShiftJISString -> ErrorT TranscodeError IO ()
prettyPrintShiftJIS str = do
  lift $ putChar '"'     -- lift turns an IO computation into an ErrorT computation
  case transcodeShiftJISToUTF8 str of
    Left error -> throwError error
    Right value -> lift $ putEscapedString value
  lift $ putChar '"'








Rust

Rust distinguishes between failures and panics.

A panic is an assertion, designed for what I called logic failures;
there’s no way to recover from one, it just immediately crashes.

A failure is just when a function doesn’t produce the value you might
expect, which Rust encourages you to express with either Option<T>
(for simple cases, like what I described as simple domain errors) or
Result<T> (which is effectively the same, except carrying an error).
In either case, it’s typed manual propagation, although Rust does at
least offer a standard macro which wraps the common
pattern-match-and-return pattern for Result<T>.

The error type in Rust is a very simple protocol, much like this
proposal suggests.




Go

Go uses an error result, conventionally returned as the final result
of functions that can fail.  The caller is expected to manually check
whether this is nil; thus, Go uses typed manual propagation.

The error type in Go is an interface named error, with one method
that returns a string description of the error.

Go has a defer statement:

defer foo(x, y)





The argument has to be a call (possibly a method call, possibly a call
to a closure that you made specifically to immediately call).  All the
operands are evaluated immediately and captured in a deferred action.
Immediately after the function exits (through whatever means), all the
deferred actions are executed in LIFO order.  Yes, this is tied to
function exit, not scope exit, so you can have a dynamic number of
deferred actions as a sort of implicit undo stack.  Overall, it’s a
nice if somewhat quirky way to do ad-hoc cleanup actions.

It is also a key part of a second, funky kind of error propagation,
which is essentially untyped automatic propagation.  If you call
panic — and certain builtin operations like array accesses behave
like they do — it immediately unwinds the stack, running deferred
actions as it goes.  If a function’s deferred action calls recover,
the panic stops, the rest of the deferred actions for the function are
called, and the function returns.  A deferred action can write to the
named results, allowing a function to turn a panic error into a
normal, final-result error.  It’s conventional to not panic over
API boundaries unless you really mean it; recoverable errors are
supposed to be done with out-results.




Scripting languages

Scripting languages generally all use (untyped, obviously) automatic
exception propagation, probably because it would be quite error-prone
to do manual propagation in an untyped language.  They pretty much all
fit into the standard C++/Java/C# style of throw / try / catch.
Ruby uses different keywords for it, though.

I feel like Python uses exceptions a lot more than most other
scripting languages do, though.






Proposal


Automatic propagation

Swift should use automatic propagation of errors, rather than relying
on the programmer to manually check for them and return out.  It’s
just a lot less boilerplate for common error handling tasks.  This
introduces an implicit control flow problem, but we can ameliorate
that with marked propagation; see below.

There’s no compelling reason to deviate from the throw / catch
legacy here.  There are other options, like raise / handle.  In
theory, switching would somewhat dissociate Swift from the legacy of
exceptions; people coming from other languages have a lot of
assumptions about exceptions which don’t necessarily apply to Swift.
However, our error model is similar enough to the standard exception
model that people are inevitably going to make the connection; there’s
no getting around the need to explain what we’re trying to do.  So
using different keywords just seems petty.

Therefore, Swift should provide a throw expression.  It requires an
operand of type Error and formally yields an arbitrary type.  Its
dynamic behavior is to transfer control to the innermost enclosing
catch clause which is satisfied by the operand.  A quick example:

if timeElapsed() > timeThreshold { throw HomeworkError.Overworked }





A catch clause includes a pattern that matches an error.  We want to
repurpose the try keyword for marked propagation, which it seems to
fit far better, so catch clauses will instead be attached to a
generalized do statement:

do {
  ...

} catch HomeworkError.Overworked {
  // a conditionally-executed catch clause

} catch _ {
  // a catch-all clause
}





Swift should also provide some tools for doing manual propagation.  We
should have a standard Rust-like :code:Result<T> enum in the
library, as well as a rich set of tools, e.g.:


	A function to evaluate an error-producing closure and capture the
result as a :code:Result<T>.

	A function to unpack a :code:Result<T> by either returning its
value or propagating the error in the current context.

	A futures library that traffics in :code:Result<T> when
applicable.

	An overload of dispatch_sync which takes an error-producing
closure and propagates an error in the current context.

	etc.






Typed propagation

Swift should use statically-enforced typed propagation.  By default,
functions should not be able to throw.  A call to a function which can
throw within a context that is not allowed to throw should be rejected
by the compiler.

Function types should indicate whether the function throws; this needs
to be tracked even for first-class function values.  Functions which
do not throw are subtypes of functions that throw.

This would be written with a throws clause on the function
declaration or type:

// This function is not permitted to throw.
 func foo() -> Int {
   // Therefore this is a semantic error.
   return try stream.readInt()
 }

 // This function is permitted to throw.
 func bar() throws -> Int {
   return try stream.readInt()
 }

 // ‘throws’ is written before the arrow to give a sensible and
 // consistent grammar for function types and implicit () result types.
 func baz() throws {
   if let byte = try stream.getOOB() where byte == PROTO_RESET {
     reset()
   }
 }

 // ‘throws’ appears in a consistent position in function types.
 func fred(callback: (UInt8) throws -> ()) throws {
    while true {
      let code = try stream.readByte()
      if code == OPER_CLOSE { return }
      try callback(code)
    }
 }

 // It only applies to the innermost function for curried functions;
 // this function has type:
 //   (Int) -> (Int) throws -> Int
 func jerry(i: Int)(j: Int) throws -> Int {
   // It’s not an error to use ‘throws’ on a function that can’t throw.
   return i + j
 }





The reason to use a keyword here is that it’s much nicer for function
declarations, which generally outnumber function types by at least an
order of magnitude.  A punctuation mark would be easily lost or
mistaken amidst all the other punctuation in a function declaration,
especially if the punctuation mark were something like ! that can
validly appear at the end of a parameter type.  It makes sense for the
keyword to appear close to the return type, as it’s essentially a part
of the result and a programmer should be able to see both parts in the
same glance.  The keyword appears before the arrow for the simple
reason that the arrow is optional (along with the rest of the return
type) in function and initializer declarations; having the keyword
appear in slightly different places based on the presence of a return
type would be silly and would making adding a non-void return type
feel awkward.  The keyword itself should be descriptive, and it’s
particularly nice for it to be a form of the verb used by the throwing
expression, conjugated as if performed by the function itself.  Thus,
throw becomes throws; if we used raise instead, this would
be raises, which I personally find unappealing for reasons I’m not
sure I can put a name to.

It shouldn’t be possible to overload functions solely based on whether
the functions throw.  That is, this is not legal:

func foo() { ... } // called in contexts that cannot throw
func foo() throws { ... } // called in contexts that can throw





It is valuable to be able to overload higher-order functions based on
whether an argument function throws; it is easy to imagine algorithms
that can be implemented more efficiently if they do not need to worry
about exceptions.  (We do not, however, particularly want to encourage
a pattern of duplicating This is straightforward if the primary
type-checking pass is able to reliably decide whether a function value
can throw.

Typed propagation checking can generally be performed in a secondary
pass over a type-checked function body: if a function is not permitted
to throw, walk its body and verify that there are no throw
expressions or calls to functions that can throw.  If all throwing
calls must be marked, this can be done prior to type-checking to
decide syntactically whether a function can apparently throw; of
course, the later pass is still necessary, but the ability to do this
dramatically simplifies the implementation of the type-checker, as
discussed below.  Certain type-system features may need to be
curtailed in order to make this implementation possible for schedule
reasons.  (It’s important to understand that this is not the
motivation for marked propagation.  It’s just a convenient consequence
that marked propagation makes this implementation possible.)

Reliably deciding whether a function value can throw is easy for
higher-order uses of declared functions.  The problem, as usual, is
anonymous functions.  We don’t want to require closures to be
explicitly typed as throwing or non-throwing, but the fully-accurate
inference algorithm requires a type-checked function body, and we
can’t always type-check an anonymous function independently of its
enclosing context.  Therefore, we will rely on being able to do a pass
prior to type-checking to syntactically infer whether a closure
throws, then making a second pass after type-checking to verify the
correctness of that inference.  This may break certain kinds of
reasonable code, but the multi-pass approach should let us
heuristically unbreak targeted cases.

Typed propagation has implications for all kinds of polymorphism:


Higher-order polymorphism

We should make it easy to write higher-order functions that behave
polymorphically w.r.t. whether their arguments throw.  This can be
done in a fairly simple way: a function can declare that it throws if
any of a set of named arguments do.  As an example (using strawman
syntax):

func map<T,U>(array: [T], fn: T throws -> U) throwsIf(fn) -> [U] {
  ...
}





There’s no need for a more complex logical operator than disjunction.
You can construct really strange code where a function throws only if
one of its arguments doesn’t, but it’d be contrived, and it’s hard to
imagine how they could be type-checked without a vastly more
sophisticated approach.  Similarly, you can construct situations where
whether a function can throw is value-dependent on some other
argument, like a “should I throw an exception” flag, but it’s hard to
imagine such cases being at all important to get right in the
language.  This schema is perfectly sufficient to express normal
higher-order stuff.

In fact, while the strawman syntax above allows the function to be
specific about exactly which argument functions cause the callee to
throw, that’s already overkill in the overwhelmingly likely case of a
function that throws if any of its argument functions throw (and
there’s probably only one).  So it would probably be better to just
have a single rethrows annotation, with vague plans to allow it
to be parameterized in the future if necessary.

This sort of propagation-checking would be a straightforward extension
of the general propagation checker.  The normal checker sees that a
function isn’t allowed to propagate out and looks for propagation
points.  The conditional checker sees that a function has a
conditional propagation clause and looks for propagation points,
assuming that the listed functions don’t throw (including when looking
at any conditional propagation clauses).  The parameter would have to
be a let.

We probably do need to get higher-order polymorphism right in the
first release, because we will need it for the short-circuiting
operators.




Generic polymorphism

It would be useful to be able to parameterize protocols, and protocol
conformances, on whether the operations produce errors.  Lacking this
feature means that protocol authors must decide to either
conservatively allow throwing conformances, and thus force all generic
code using the protocol to deal with probably-spurious errors, or
aggressively forbid them, and thus forbid conformances by types whose
operations naturally throw.

There are several different ways we could approach this problem, but
after some investigation I feel confident that they’re workable.
Unfortunately, they are clearly out-of-scope for the first release.
For now, the standard library should provide protocols that cannot
throw, even though this limits some potential conformances.  (It’s
worth noting that such conformances generally aren’t legal today,
since they’d need to return an error result somehow.)

A future direction for both generic and higher-order polymorphism is
to consider error propagation to be one of many possible effects in a
general, user-extensible effect tracking system.  This would allow the
type system to check that certain specific operations are only allowed
in specific contexts: for example, that a blocking operation is only
allowed in a blocking context.




Error type

The Swift standard library will provide ErrorType, a protocol with
a very small interface (which is not described in this proposal).  The
standard pattern should be to define the conformance of an enum to
the type:

enum HomeworkError : ErrorType {
  case Overworked
  case Impossible
  case EatenByCat(Cat)
  case StopStressingMeWithYourRules
}





The enum provides a namespace of errors, a list of possible errors
within that namespace, and optional values to attach to each option.

For now, the list of errors in a domain will be fixed, but permitting
future extension is just ordinary enum resilience, and the standard
techniques for that will work fine in the future.

Note that this corresponds very cleanly to the NSError model of an
error domain, an error code, and optional user data.  We expect to
import system error domains as enums that follow this approach and
implement ErrorType.  NSError and CFError themselves will also
conform to ErrorType.

The physical representation (still being nailed down) will make it
efficient to embed an NSError as an ErrorType and vice-versa.  It
should be possible to turn an arbitrary Swift enum that conforms to
ErrorType into an NSError by using the qualified type name as the
domain key, the enumerator as the error code, and turning the payload
into user data.

It’s acceptable to allocate memory whenever an error is needed,
but our representation should not inhibit the optimizer from
forwarding a throw directly to a catch and removing the
intermediate error object.






Marked propagation

Swift should use marked propagation: there should be some lightweight
bit of syntax decorating anything that is known be able to throw
(other than a throw expression itself, of course).

Our proposed syntax is to repurpose try as something that can be
wrapped around an arbitrary expression:

// This try applies to readBool().
if try stream.readBool() {

  // This try applies to both of these calls.
  let x = try stream.readInt() + stream.readInt()

  // This is a semantic error; it needs a try.
  var y = stream.readFloat()

  // This is okay; the try covers the entire statement.
  try y += stream.readFloat()
}





Developers can “scope” the try very tightly by writing it within
parentheses or on a specific argument or list element:

// Semantic error: the try only covers the parenthesized expression.
let x = (try stream.readInt()) + stream.readInt()

// The try applies to the first array element.  Of course, the
// developer could cover the entire array by writing the try outside.
let array = [ try foo(), bar(), baz() ]





Some developers may wish to do this to make the specific throwing
calls very clear.  Other developers may be content with knowing that
something within a statement can throw.

We also briefly considered the possibility of putting the marker into
the call arguments clause, e.g.:

parser.readKeys(&strings, try)





This works as long as the only throwing calls are written
syntactically as calls; this covers calls to free functions, methods,
and initializers.  However, it effectively requires Swift to forbid
operators and property and subscript accessors from throwing, which
may not be a reasonable limitation, especially for operators.  It is
also somewhat unnatural, and it forces users to mark every single call
site instead of allowing them to mark everything within a statement at
once.

Autoclosures pose a problem for marking.  For the most part, we want
to pretend that the expression of an autoclosure is being evaluated in
the enclosing context; we don’t want to have to mark both a call
within the autoclosure and the call to the function taking the
autoclosure!  We should teach the type-checking pass to recognize this
pattern: a call to a function that throwsIf an autoclosure argument
does.

There’s a similar problem with functions that are supposed to feel
like statements.  We want you to be able to write:

autoreleasepool {
  let string = parseString(try)
  ...
}





without marking the call to autoreleasepool, because this undermines
the ability to write functions that feel like statements.  However,
there are other important differences between these trailing-closure
uses and true built-in statements, such as the behavior of return,
break, and continue.  An attribute which marks the function as
being statement-like would be a necessary step towards addressing both
problems.  Doing this reliably in closures would be challenging,
however.


Asserting markers

Typed propagation is a hypothesis-checking mechanism and so suffers
from the standard problem of false positives.  (Basic soundness
eliminates false negatives, of course: the compiler is supposed to
force programmers to deal with every source of error.)  In this
case, a false positive means a situation where an API is declared to
throw but an error is actually dynamically impossible.

For example, a function to load an image from a URL would usually be
designed to produce an error if the image didn’t exist, the connection
failed, the file data was malformed, or any of a hundred other
problems arose.  The programmer should be expected to deal with that
error in general.  But a programmer might reasonably use the same API
to load an image completely under their control, e.g. from their
program’s private resources.  We shouldn’t make it too syntactically
inconvenient to “turn off” error-checking for such calls.

One important point is that we don’t want to make it too easy to
ignore errors.  Ignored errors usually lead to a terrible debugging
experience, even if the error is logged with a meaningful stack trace;
the full context of the failure is lost and can be difficult to
reproduce.  Ignored errors also have a way of compounding, where an
error that’s “harmlessly” ignored at one layer of abstraction causes
another error elsewhere; and of course the second error can be
ignored, etc., but only by making the program harder and harder to
understand and debug, leaving behind log files that are increasingly
jammed with the detritus of a hundred ignored errors.  And finally,
ignoring errors creates a number of type-safety and security problems
by encouraging programs to blunder onwards with meaningless data and
broken invariants.

Instead, we just want to make it (comparatively) easy to turn a static
problem into a dynamic one, much as assertions and the ! operator do.
Of course, this needs to be an explicit operation, because otherwise
we would completely lose typed propagation; and it should be
call-specific, so that the programmer has to make an informed decision
about individual operations.  But we already have an explicit,
call-site-specific annotation: the try operator.  So the obvious
solution is to allow a variant of try that asserts that an error
is not thrown out of its operand; and the obvious choice there within
our existing design language is to use the universal “be careful, this
is unsafe” marker by making the keyword try!.

It’s reasonable to ask whether try! is actually too easy to
write, given that this is, after all, an unsafe operation.  One quick
rejoinder is that it’s no worse than the ordinary ! operator in
that sense.  Like !, it’s something that a cautious programmer
might want to investigate closer, and you can easily imagine codebases
that expect uses of it to always be explained in comments.  But more
importantly, just like ! it’s only statically unsafe, and it
will reliably fail when the programmer is wrong.  Therefore, while you
can easily imagine (and demonstrate) uncautious programmers flailing
around with it to appease the type-checker, that’s not actually a
tenable position for the overall program: eventually the programmer
will have to learn how to use the feature, or else their program
simply won’t run.

Furthermore, while try! does somewhat undermine error-safety in
the hands of a careless programmer, it’s still better to promote this
kind of unsafety than to implicitly promote the alternative.  A
careless programmer isn’t going to write good error handling just
because we don’t give them this feature.  Instead, they’ll write out a
do/catch block, and the natural pressure there will be to silently
swallow the error — after all, that takes less boilerplate than
asserting or logging.

In a future release, when we add support for universal errors, we’ll
need to reconsider the behavior of try!.  One possibility is that
try! should simply start propagating its operand as a universal
error; this would allow emergency recovery.  Alternatively, we may
want try! to assert that even universal errors aren’t thrown out
of it; this would provide a more consistent language model between the
two kinds of errors.  But we don’t need to think too hard about this
yet.






Other syntax


Clean-up actions

Swift should provide a statement for cleaning up with an ad hoc
action.

Overall, I think it is better to use a Go-style defer than a
Java-style try ... finally.  While this makes the exact order of
execution more obscure, it does make it obvious that the clean-up
will be executed without any further analysis, which is something
that readers will usually be interested in.

Unlike Go, I think this should be tied to scope-exit, not to
function-exit.  This makes it very easy to know the set of defer
actions that will be executed when a scope exits: it’s all the defer
statement in exactly that scope.  In contrast, in Go you have to
understand the dynamic history of the function’s execution.  This also
eliminates some semantic and performance oddities relating to variable
capture, since the defer action occurs with everything still in
scope.  One downside is that it’s not as good for “transactional”
idioms which push an undo action for everything they do, but that
style has composition problems across function boundaries anyway.

I think defer is a reasonable name for this, although we might also
consider finally.  I’ll use defer in the rest of this proposal.

defer may be followed by an arbitrary statement.  The compiler
should reject an action that might terminate early, whether by
throwing or with return, break, or continue.

Examples:

if exists(filename) {
  let file = open(filename, O_READ)
  defer close(file)

  while let line = try file.readline() {
    ...
  }

  // close occurs here, at the end of the formal scope.
}





We should consider providing a convenient way to mark that a defer
action should only be taken if an error is thrown.  This is a
convenient shorthand for controlling the action with a flag that’s
only set to true at the end of an operation.  The flag approach is
often more useful, since it allows the action to be taken for any
early exit, e.g. a return, not just for error propagation.




using

Swift should consider providing a using statement which acquires a
resource, holds it for a fixed period of time, optionally binds it to
a name, and then releases it whenever the controlled statement exits.

using has many similarities to defer.  It does not subsume
defer, which is useful for many ad-hoc and tokenless clean-ups.  But
it is convenient for the common pattern of a type-directed clean-up.

We do not expect this feature to be necessary in the first release.






C and Objective-C Interoperation

It’s of paramount importance that Swift’s error model interact as
cleanly with Objective-C APIs as we can make it.

In general, we want to try to import APIs that produce errors as
throwing; if this fails, we’ll import the API as an ordinary
non-throwing function.  This is a safe approach only under the
assumption that importing the function as throwing will require
significant changes to the call.  That is, if a developer writes code
assuming that an API will be imported as throwing, but in fact Swift
fails to import the API that way, it’s important that the code doesn’t
compile.

Fortunately, this is true for the common pattern of an error
out-parameter: if Swift cannot import the function as throwing, it
will leave the out-parameter in place, and the compiler will complain
if the developer fails to pass an error argument.  However, it is
possible to imagine APIs where the “meat” of the error is returned in
a different way; consider a POSIX API that simply sets errno.  Great
care would need to be taken when such an API is only partially
imported as throwing.

Let’s wade into the details.


Error types

NSError and CFError should implement the ErrorType protocol.  It
should be possible to turn an arbitrary Swift enum that conforms to
ErrorType into an NSError by using the qualified type name as the
domain key, the enumerator as the error code, and turning the payload
into user data.

Recognizing system enums as error domains is a matter of annotation.
Most likely, Swift will just special-case a few common domains in
the first release.




Objective-C method error patterns

The most common error pattern in ObjC by far is for a method to have
an autoreleased NSError** out-parameter.  We don’t currently propose
automatically importing anything as throws when it lacks such a
parameter.

If any APIs take an NSError** and don’t intend for it to be an
error out-parameter, they will almost certainly need it to be marked.


Detecting an error

Many of these methods have some sort of significant result which
is used for testing whether an error occurred:


	The most common pattern is a BOOL result, where a false value
means an error occurred.  This seems unambiguous.

Swift should import these methods as if they’d returned Void.



	Also common is a pointer result, where a nil result usually means
an error occurred.

I’ve been told that there are some exceptions to this rule, where a
nil result is valid and the caller is apparently meant to check
for a non-nil error.  I haven’t been able to find any such APIs
in Cocoa, though; the claimed APIs I’ve been referred to do have
nullable results, but returned via out-parameters with a BOOL
formal result.  So it seems to be a sound policy decision for
Objective-C that nil results are errors by default.  CF might be
a different story, though.

When a nil result implies that an error has occurred, Swift
should import the method as returning a non-optional result.



	A few CF APIs return void.  As far as I can tell, for all of
these, the caller is expected to check for a non-nil error.





For other sentinel cases, we can consider adding a new clang attribute
to indicate to the compiler what the sentinel is:


	There are several APIs returning NSInteger or NSUInteger.  At
least some of these return 0 on error, but that doesn’t seem like a
reasonable general assumption.

	AVFoundation provides a couple methods returning
AVKeyValueStatus.  These produce an error if the API returned
AVKeyValueStatusFailed, which, interestingly enough, is not the
zero value.



The clang attribute would specify how to test the return value for
an error.  For example:

+ (NSInteger)writePropertyList:(id)plist
                      toStream:(NSOutputStream *)stream
                        format:(NSPropertyListFormat)format
                       options:(NSPropertyListWriteOptions)opt
                         error:(out NSError **)error
  NS_ERROR_RESULT(0)

- (AVKeyValueStatus)statusOfValueForKey:(NSString *)key
                                  error:(NSError **)
  NS_ERROR_RESULT(AVKeyValueStatusFailed);





We should also provide a Clang attribute which specifies that the
correct way to test for an error is to check the out-parameter.  Both
of these attributes could potentially be used by the static analyzer,
not just Swift.  (For example, they could try to detect an invalid
error check.)

A constant value would be sufficient for the cases I’ve seen, but if
the argument has to generalized to a simple expression, that’s still
feasible.




The error parameter

The obvious import rule for Objective-C methods with NSError**
out-parameters is to simply mark them throws and remove the selector
clause corresponding to the out-parameter.  That is, a method like
this one from NSAttributedString:

- (NSData *)dataFromRange:(NSRange)range
       documentAttributes:(NSDictionary *)dict
                    error:(NSError **)error;





would be imported as:

func dataFromRange(range: NSRange,
                   documentAttributes dict: NSDictionary) throws -> NSData





However, applying this rule haphazardly causes problems for
Objective-C interoperation, because multiple methods can be imported
the same way.  The model is far more comprehensible to both compiler
and programmer if the original Objective-C declaration can be
unambiguously reconstructed from a Swift declaration.

There are two sources of this ambiguity:


	The error parameter could have appeared at an arbitrary position in
the selector; that is, both foo:bar:error: and foo:error:bar:
would appear as foo:bar: after import.

	The error parameter could have had an arbitrary selector chunk;
that is, both foo:error: and foo:withError: would appear as
foo: after import.



To allow reconstruction, then, we should only apply the rule when the
error parameter is the last parameter and the corresponding selector
is either error: or the first chunk.  Empirically, this seems to do
the right thing for all but two sets of APIs in the public API:


	The ISyncSessionDriverDelegate category on NSObject declares
half-a-dozen methods like this:

- (BOOL)sessionDriver:(ISyncSessionDriver *)sender
        didRegisterClientAndReturnError:(NSError **)outError;





Fortunately, these delegate methods were all deprecated in Lion,
and Swift currently doesn’t even import deprecated methods.



	NSFileCoordinator has half a dozen methods where the error:
clause is second-to-last, followed by a block argument.  These
methods are not deprecated as far as I know.





Of course, user code could also fail to follow this rule.

I think it’s acceptable for Swift to just not import these methods as
throws, leaving the original error parameter in place exactly as if
they didn’t follow an intelligible pattern in the header.

This translation rule would import methods like this one from
NSDocument:

- (NSDocument *)duplicateAndReturnError:(NSError **)outError;





like so:

func duplicateAndReturnError() throws -> NSDocument





Leaving the AndReturnError bit around feels unfortunate to me, but I
don’t see what we could do without losing the ability to automatically
reconstruct the Objective-C signature.  This pattern is common but
hardly universal; consider this method from NSManagedObject:

- (BOOL)validateForDelete:(NSError **)error;





This would be imported as:

func validateForDelete() throws





This seems like a really nice import.






CoreFoundation functions

CF APIs use CFErrorRef pretty reliably, but there are two problems.

First, we’re not as confident about the memory management rules for
the error object.  Is it always returned at +1?

Second, I’m not as confident about how to detect that an error has
occurred:


	There are a lot of functions that return Boolean or bool.  It’s
likely that these functions consistently use the same convention as
Objective-C: false means error.

	Similarly, there are many functions that return an object reference.
Again, we’d need a policy on whether to treat nil results as
errors.

	There are a handful of APIs that return a CFIndex, all with
apparently the same rule that a zero value means an error.  (These
are serialization APIs, so writing nothing seems like a reasonable
error.)  But just like Objective-C, that does not seem like a
reasonable default assumption.

	ColorSyncProfile has several related functions that return
float!  These are both apparently meant to be checked by testing
whether the error result was filled in.



There are also some APIs that do not use CFErrorRef.  For example,
most of the CVDisplayLink APIs in CoreVideo returns their own
CVReturn enumeration, many with more than one error value.
Obviously, these will not be imported as throwing unless CoreVideo
writes an overlay.




Other C APIs

In principle, we could import POSIX functions into Swift as throwing
functions, filling in the error from errno.  It’s nearly impossible
to imagine doing this with an automatic import rule, however; much
more likely, we’d need to wrap them all in an overlay.






Implementation design

Error propagation for the kinds of explicit, typed errors that I’ve
been focusing on should be handled by implicit manual propagation.  It
would be good to bias the implementation somewhat towards the
non-error path, perhaps by moving error paths to the ends of functions
and so on, and perhaps even by processing cleanups with an
interpretive approach instead of directly inlining that code, but we
should not bias so heavily as to seriously compromise performance.  In
other words, we should not use table-based unwinding.

Error propagation for universal errors should be handled by
table-based unwinding.  catch handlers can catch both, mapping
unwind exceptions to ErrorType values as necessary.  With a
carefully-designed interpretation function aimed to solve the specific
needs of Swift, we can avoid most of the code-size impact by shifting
it to the unwind tables, which needn’t ever be loaded in the common
case.









          

      

      

    

  

    
      
          
            
  
Generics in Swift


Motivation

Most types and functions in code are expressed in terms of a single, concrete
set of sets. Generics generalize this notion by allowing one to express types
and functions in terms of an abstraction over a (typically unbounded) set of
types, allowing improved code reuse. A typical example of a generic type is a
linked list of values, which can be used with any type of value. In C++, this
might be expressed as:

template<typename T>
class List {
public:
  struct Node {
    T value;
    Node *next;
  };

  Node *first;
};





where List<Int>, List<String>, and List<DataRecord> are all distinct types that
provide a linked list storing integers, strings, and DataRecords,
respectively. Given such a data structure, one also needs to be able to
implement generic functions that can operate on a list of any kind of elements,
such as a simple, linear search algorithm:

template<typename T>
typename List<T>::Node *find(const List<T>&list, const T& value) {
  for (typename List<T>::Node *result = list.first; result; result = result->next)
    if (result->value == value)
      return result;

  return 0;
}





Generics are important for the construction of useful libraries, because they
allow the library to adapt to application-specific data types without losing
type safety. This is especially important for foundational libraries containing
common data structures and algorithms, since these libraries are used across
nearly every interesting application.

The alternatives to generics tend to lead to poor solutions:


	Object-oriented languages tend to use “top” types (id in Objective-C,
java.lang.Object in pre-generics Java, etc.) for their containers and
algorithms, which gives up static type safety. Pre- generics Java forced the
user to introduce run-time-checked type casts when interacting with containers
(which is overly verbose), while Objective-C relies on id’s unsound implicit
conversion behavior to eliminate the need for casts.

	Many languages bake common data structures (arrays, dictionaries, tables) into
the language itself. This is unfortunate both because it significantly
increases the size of the core language and because users then tend to use
this limited set of data structures for every problem, even when another
(not-baked-in) data structure would be better.



Swift is intended to be a small, expressive language with great support for
building libraries. We’ll need generics to be able to build those libraries
well.




Goals


	Generics should enable the development of rich generic libraries that feel
similar to first-class language features

	Generics should work on any type, whether it is a value type or some kind of
object type

	Generic code should be almost as easy to write as non-generic code

	Generic code should be compiled such that it can be executed with any data
type without requiring a separate “instantiation” step

	Generics should interoperate cleanly with run-time polymorphism

	Types should be able to retroactively modified to meet the requirements of a
generic algorithm or data structure



As important as the goals of a feature are the explicit non-goals, which we
don’t want or don’t need to support:


	Compile-time “metaprogramming” in any form

	Expression-template tricks a la Boost.Spirit, POOMA






Polymorphism

Polymorphism allows one to use different data types with a uniform
interface. Overloading already allows a form of polymorphism ( ad hoc
polymorphism) in Swift. For example, given:

func +(x : Int, y : Int) -> Int { add... }
func +(x : String, y : String) -> String { concat... }





we can write the expression “x + y”, which will work for both integers and
strings.

However, we want the ability to express an algorithm or data structure
independently of mentioning any data type. To do so, we need a way to express
the essential interface that algorithm or data structure requires. For example,
an accumulation algorithm would need to express that for any type T, one can
write the expression “x + y” (where x and y are both of type T) and it will
produce another T.




Protocols

Most languages that provide some form of polymorphism also have a way to
describe abstract interfaces that cover a range of types: Java and C#
interfaces, C++ abstract base classes, Objective-C protocols, Scala traits,
Haskell type classes, C++ concepts (briefly), and many more.  All allow one to
describe functions or methods that are part of the interface, and provide some
way to re-use or extend a previous interface by adding to it. We’ll start with
that core feature, and build onto it what we need.

In Swift, I suggest that we use the term protocol for this feature, because I
expect the end result to be similar enough to Objective-C protocols that our
users will benefit, and (more importantly) different enough from Java/C#
interfaces and C++ abstract base classes that those terms will be harmful. The
term trait comes with the wrong connotation for C++ programmers, and none of our
users know Scala.

In its most basic form, a protocol is a collection of function signatures:

protocol Document {
  func title() -> String
}





Document describes types that have a title() operation that accepts no arguments
and returns a String. Note that there is implicitly a ‘self’ type,
which is the type that conforms to the protocol itself. This follows how most
object-oriented languages describe interfaces, but deviates from Haskell type
classes and C++ concepts, which require explicit type parameters for all of the
types. We’ll revisit this decision later.




Protocol Inheritance

Composition of protocols is important to help programmers organize and
understand a large number of protocols and the data types that conform to those
protocols. For example, we could extend our Document protocol to cover documents
that support versioning:

protocol VersionedDocument : Document {
  func version() -> Int
}





Multiple inheritance is permitted, allowing us to form a directed acyclic graph
of protocols:

protocol PersistentDocument : VersionedDocument, Serializable {
  func saveToFile(filename : path)
}





Any type that conforms to PersistentDocument also conforms to VersionedDocument,
Document, and Serializable, which gives us substitutability.




Self Types

Protocols thus far do not give us an easy way to express simple binary
operations. For example, let’s try to write a Comparable protocol that could be
used to search for a generic find() operation:

protocol Comparable {
  func isEqual(other : ???) -> bool
}





Our options for filling in ??? are currently very poor. We could use the syntax
for saying “any type” or “any type that is comparable”, as one must do most OO
languages, including Java, C#, and Objective-C, but that’s not expressing what
we want: that the type of both of the arguments be the same. This is sometimes
referred to as the binary method problem
(http://www.cis.upenn.edu/~bcpierce/papers/binary.ps has a discussion of this
problem, including the solution I’m proposing below).

Neither C++ concepts nor Haskell type classes have this particular problem,
because they don’t have the notion of an implicit ‘Self’ type. Rather,
they explicitly parameterize everything. In C++ concepts:

concept Comparable<typename T> {
  bool T::isEqual(T);
}





Java and C# programmers work around this issue by parameterizing the
interface, e.g. (in Java):

abstract class Comparable<THIS extends Comparable<THIS>> {
  public bool isEqual(THIS other);
}





and then a class X that wants to be Comparable will inherit from
Comparable<X>. This is ugly and has a number of pitfalls; see
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6479372 .

Scala and Strongtalk have the notion of the ‘Self’ type, which effectively
allows one to refer to the eventual type of ‘self’ (which we call
‘self’). ‘Self’ (which we call ‘Self’ in Swift) allows us to express the
Comparable protocol in a natural way:

protocol Comparable {
  func isEqual(other : Self) -> bool
}





By expressing Comparable in this way, we know that if we have two objects of
type T where T conforms to Comparable, comparison between those two objects with
isEqual is well-typed. However, if we have objects of different types T and U,
we cannot compare those objects with isEqual even if both T and U are
Comparable.

Self types are not without their costs, particularly in the case where Self is
used as a parameter type of a class method that will be subclassed. Here, the
parameter type ends up being (implicitly) covariant, which tightens up
type-checking but may also force us into more dynamic type checks. We can
explore this separately; within protocols, type-checking for Self is more
direct.




Associated Types

In addition to Self, a protocol’s operations often need to refer to types that
are related to the type of ‘Self’, such as a type of data stored in a
collection, or the node and edge types of a graph. For example, this would allow
us to cleanly describe a protocol for collections:

protocol Collection {
  typealias Element
  func forEach(callback : (value : Element) -> void)
  func add(value : Element)
}





It is important here that a generic function that refers to a given type T,
which is known to be a collection, can access the associated types corresponding
to T. For example, one could implement an “accumulate” operation for an
arbitrary Collection, but doing so requires us to specify some constraints on
the Value type of the collection. We’ll return to this later.




Operators, Properties, and Subscripting

As previously noted, protocols can contain both function requirements (which are
in effect requirements for instance methods) and associated type
requirements. Protocols can also contain operators, properties, and subscript
operators:

protocol RandomAccessContainer : Collection {
  var length : Int
  func ==(lhs : Self, rhs : Self)
  subscript (i : Int) -> Element
}





Operator requirements can be satisfied by operator definitions, property
requirements can be satisfied by either variables or properties, and subscript
requirements can be satisfied by subscript operators.




Conforming to a Protocol

Thus far, we have not actually shown how a type can meet the requirements of a
protocol. The most syntactically lightweight approach is to allow implicit
conformance. This is essentially duck typing, where a type is assumed to conform
to a protocol if it meets the syntactic requirements of the protocol. For
example, given:

protocol Shape {
  func draw()
}





One could write a Circle struct such as:

struct Circle {
  var center : Point
  var radius : Int

  func draw() {
    // draw it
  }
}





Circle provides a draw() method with the same input and result types as required
by the Shape protocol. Therefore, Circle conforms to Shape.

Implicit protocol conformance is convenient, because it requires no additional
typing. However, it can run into some trouble when an entity that syntactically
matches a protocol doesn’t provide the required semantics. For example, Cowboys
also know how to “draw!”:

struct Cowboy {
  var gun : SixShooter

  func draw() {
    // draw!
  }
}





It is unlikely that Cowboy is meant to conform to Shape, but the method name and
signatures match, so implicit conformance deduces that Cowboy conforms to
Shape. Random collisions between types are fairly rare. However, when one is
using protocol inheritance with fine- grained (semantic or mostly-semantic)
differences between protocols in the hierarchy, they become more common. See
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1798.html for examples
of this problem as it surfaced with C++ concepts. It is not clear at this time
whether we want implicit conformance in Swift: there’s no existing code to worry
about, and explicit conformance (described below) provides some benefits.




Explicit Protocol Conformance

Type authors often implement types that are intended to conform to a particular
protocol. For example, if we want a linked-list type to conform to Collection,
we can specify that it is by adding a protocol conformance annotation to the
type:

struct EmployeeList : Collection { // EmployeeList is a collection
  typealias Element = T
  func forEach(callback : (value : Element) -> void) { /* Implement this */ }
  func add(value : Element) { /* Implement this */ }
}





This explicit protocol conformance declaration forces the compiler to check that
EmployeeList actually does meet the requirements of the Collection protocol. If
we were missing an operation (say, forEach) or had the wrong signature, the
definition of ‘EmployeeList’ would be ill-formed. Therefore, explicit
conformance provides both documentation for the user of EmployeeList and
checking for the author and future maintainers of EmployeeList.

Any nominal type (such as an enum, struct, or class) can be specified to conform
to one or more protocols in this manner. Additionally, a typealias can be
specified to conform to one or more protocols, e.g.,:

typealias NSInteger : Numeric = Int





While not technically necessary due to retroactive modeling (below), this can be
used to document and check that a particular type alias does in fact meet some
basic, important requirements. Moreover, it falls out of the syntax that places
requirements on associated types.




Retroactive Modeling

When using a set of libraries, it’s fairly common that one library defines a
protocol (and useful generic entities requiring that protocol) while another
library provides a data type that provides similar functionality to that
protocol, but under a different name.  Retroactive modeling is the process by
which the type is retrofitted (without changing the type) to meet the
requirements of the protocol.

In Swift, we provide support for retroactive modeling by allowing
extensions, e.g.,:

extension String : Collection {
  typealias Element = char
  func forEach(callback : (value : Element) -> void) { /* use existing String routines to enumerate characters */ }
  func add(value : Element) { self += value /* append character */ }
}





Once an extension is defined, the extension now conforms to the Collection
protocol, and can be used anywhere a Collection is expected.




Default Implementations

The functions declared within a protocol are requirements that any type must
meet if it wants to conform to the protocol. There is a natural tension here,
then, between larger protocols that make it easier to write generic algorithms,
and smaller protocols that make it easier to write conforming types. For
example, should a Numeric protocol implement all operations, e.g.,:

protocol Numeric {
  func +(lhs : Self, rhs : Self) -> Self
  func -(lhs : Self, rhs : Self) -> Self
  func +(x : Self) -> Self
  func -(x : Self) -> Self
}





which would make it easy to write general numeric algorithms, but requires the
author of some BigInt class to implement a lot of functionality, or should the
numeric protocol implement just the core operations:

protocol Numeric {
  func +(lhs : Self, rhs : Self) -> Self
  func -(x : Self) -> Self
}





to make it easier to adopt the protocol (but harder to write numeric
algorithms)? Both of the protocols express the same thing (semantically),
because one can use the core operations (binary +, unary -) to implement the
other algorithms. However, it’s far easier to allow the protocol itself to
provide default implementations:

protocol Numeric {
  func +(lhs : Self, rhs : Self) -> Self
  func -(lhs : Self, rhs : Self) -> Self { return lhs + -rhs }
  func +(x : Self) -> Self { return x }
  func -(x : Self) -> Self
}





This makes it easier both to implement generic algorithms (which can use the
most natural syntax) and to make a new type conform to the protocol. For
example, if we were to define only the core algorithms in our BigNum type:

struct BigNum : Numeric {
  func +(lhs : BigNum, rhs : BigNum) -> BigNum { ... }
  func -(x : BigNum) -> BigNum { ... }
}





the compiler will automatically synthesize the other operations needed for the
protocol. Moreover, these operations will be available to uses of the BigNum
class as if they had been written in the type itself (or in an extension of the
type, if that feature is used), which means that protocol conformance actually
makes it easier to define types that conform to protocols, rather than just
providing additional checking.




Subtype Polymorphism

Subtype polymorphism is based on the notion of substitutability. If a type S is
a subtype of a type T, then a value of type S can safely be used where a value
of type T is expected. Object-oriented languages typically use subtype
polymorphism, where the subtype relationship is based on inheritance: if the
class Dog inherits from the class Animal, then Dog is a subtype of
Animal. Subtype polymorphism is generally dynamic, in the sense that the
substitution occurs at run-time, even if it is statically type-checked.

In Swift, we consider protocols to be types. A value of protocol type has an
existential type, meaning that we don’t know the concrete type until run-time
(and even then it varies), but we know that the type conforms to the given
protocol. Thus, a variable can be declared with type “Serializable”, e.g.,:

var x : Serializable = // value of any Serializable type
x.serialize() // okay: serialize() is part of the Serializable protocol





Naturally, such polymorphism is dynamic, and will require boxing of value types
to implement. We can now see how Self types interact with subtype
polymorphism. For example, say we have two values of type Comparable, and we try
to compare them:

var x : Comparable = ...
var y : Comparable = ...
if x.isEqual(y) { // well-typed?
}





Whether x.isEqual(y) is well-typed is not statically determinable, because the
dynamic type of x may different from the dynamic type of y, even if they are
both comparable (e.g., one is an Int and the other a String). It can be
implemented by the compiler as a dynamic type check, with some general failure
mode (aborting, throwing an exception, etc.) if the dynamic type check fails.

To express types that meet the requirements of several protocols, one can just
create a new protocol aggregating those protocols:

protocol SerializableDocument : Document, Serializable { }
var doc : SerializableDocument
print(doc.title()) // okay: title() is part of the Document protocol, so we can call it
doc.serialize(stout) // okay: serialize() is part of the Serializable protocol





However, this only makes sense when the resulting protocol is a useful
abstraction. A SerializableDocument may or may not be a useful abstraction. When
it is not useful, one can instead use protocol<> types to compose different
protocols, e.g.,:

var doc : protocol<Document, Serializable>





Here, doc has an existential type that is known to conform to both the Document
and Serializable protocols. This gives rise to a natural “top” type, such that
every type in the language is a subtype of “top”. Java has java.lang.Object, C#
has object, Objective-C has “id” (although “id” is weird, because it is also
convertible to everything; it’s best not to use it as a model). In Swift, the
“top” type is simply an empty protocol composition:

typealias Any = protocol<>

var value : Any = 17 // an any can hold an integer
value = "hello" // or a String
value = (42, "hello", Red) // or anything else








Bounded Parametric Polymorphism

Parametric polymorphism is based on the idea of providing type parameters for a
generic function or type. When using that function or type, one substitutes
concrete types for the type parameters. Strictly speaking, parametric
polymorphism allows any type to be substituted for a type parameter, but it’s
useless in practice because that means that generic functions or types cannot do
anything to the type parameters: they must instead rely on first-class functions
passed into the generic function or type to perform any meaningful work.

Far more useful (and prevalent) is bounded parametric polymorphism, which allows
the generic function or type to specify constraints (bounds) on the type
parameters. By specifying these bounds, it becomes far easier to write and use
these generic functions and types.  Haskell type classes, Java and C# generics,
C++ concepts, and many other language features support bounded parametric
polymorphism.

Protocols provide a natural way to express the constraints of a generic function
in Swift. For example, one could define a generic linked list as:

struct ListNode<T> {
  var Value : T
  enum NextNode { case Node : ListNode<T>, End }
  var Next : NextNode
}

struct List<T > {
  var First : ListNode<T>::NextNode
}





This list works on any type T. One could then add a generic function that
inserts at the beginning of the list:

func insertAtBeginning<T>(list : List<T>, value : T) {
  list.First = ListNode<T>(value, list.First)
}








Expressing Constraints

Within the type parameter list of a generic type or function (e.g., the <T> in
ListNode<T>), the ‘T’ introduces a new type parameter and the (optional) ”:
type” names a protocol (or protocol composition) to which ‘T’ must
conform. Within the body of the generic type or function, any of the functions
or types described by the constraints are available. For example, let’s
implement a find() operation on lists:

func find<T : Comparable>(list : List<T>, value : T) -> Int {
  var index = 0
  var current
  for (current = list.First; current is Node; current = current.Next) {
    if current.Value.isEqual(value) { // okay: T is Comparable
      return index
    }
    index = index + 1
  }
  return -1
}





In addition to providing constraints on the type parameters, we also need to be
able to constrain associated types. To do so, we introduce the notion of a
“where” clause, which follows the signature of the generic type or
function. For example, let’s generalize our find algorithm to work on any
ordered collection:

protocol OrderedCollection : Collection {
  func size() -> Int
  func getAt(index : Int) -> Element // Element is an associated type
}

func find<C : OrderedCollection where C.Element : Comparable>(
       collection : C, value : C.Element) -> Int
{
  for index in 0...collection.size() {
    if (collection.getAt(index) == value) { // okay: we know that C.Element is Comparable
      return index
    }
  }
  return -1
}





The where clause is actually the more general way of expressing constraints,
and the constraints expressed in the angle brackets (e.g., <C :
OrderedCollection>) are just sugar for a where clause.  For example, the
above find() signature is equivalent to:

func find<C where C : OrderedCollection, C.Element : Comparable>(
       collection : C, value : C.Element)-> Int





Note that find<C> is shorthand for (and equivalent to) find<C : Any>, since
every type conforms to the Any protocol composition.

There are two other important kinds of constraints that need to be
expressible. Before we get to those, consider a simple “Enumerator” protocol that
lets us describe an iteration of values of some given value type:

protocol Enumerator {
  typealias Element
  func isEmpty() -> Bool
  func next() -> Element
}





Now, we want to express the notion of an enumerable collection, which provides a
iteration, which we do by adding requirements into the protocol:

protocol EnumerableCollection : Collection {
  typealias EnumeratorType : Enumerator
  where EnumeratorType.Element == Element
  func getEnumeratorType() -> EnumeratorType
}





Here, we are specifying constraints on an associated type (EnumeratorType must
conform to the Enumerator protocol), by adding a conformance clause (: Enumerator)
to the associated type definition. We also use a separate where clause to
require that the type of values produced by querying the enumerator is the same as
the type of values stored in the container. This is important, for example, for
use with the Comparable protocol (and any protocol using Self types), because it
maintains type identity within the generic function or type.




Constraint Inference

Generic types often constrain their type parameters. For example, a
SortedDictionary, which provides dictionary functionality using some kind of
balanced binary tree (as in C++’s std::map), would require that its key type be
Comparable:

class SortedDictionary<Key : Comparable, Value> {
  // ...
}





Naturally, one any generic operation on a SortedDictionary<K,V> would also require
that K be Comparable, e.g.,:

func forEachKey<Key : Comparable, Value>(c : SortedDictionary<Key, Value>,
                                         f : (Key) -> Void) { /* ... */ }





However, explicitly requiring that Key conform to Comparable is redundant: one
could not provide an argument for ‘c’ without the Key type of the
SortedDictionary conforming to Comparable, because the SortedDictionary type
itself could not be formed. Constraint inference infers these additional
constraints within a generic function from the parameter and return types of the
function, simplifying the specification of forEachKey:

func forEachKey<Key, Value>(c : SortedDictionary<Key, Value>,
                            f : (Key) -> Void) { /* ... */ }








Type Parameter Deduction

As noted above, type arguments will be deduced from the call arguments to a
generic function:

var values : list<Int>
insertAtBeginning(values, 17) // deduces T = Int





Since Swift already has top-down type inference (as well as the C++-like
bottom-up inference), we can also deduce type arguments from the result type:

func cast<T, U>(value : T) -> U { ... }
var x : Any
var y : Int = cast(x) // deduces T = Any, U = Int





We require that all type parameters for a generic function be deducible. We
introduce this restriction so that we can avoid introducing a syntax for
explicitly specifying type arguments to a generic function, e.g.,:

var y : Int = cast<Int>(x) // not permitted: < is the less-than operator





This syntax is horribly ambiguous in C++, and with good type argument deduction,
should not be necessary in Swift.




Implementation Model

Because generics are constrained, a well-typed generic function or type can be
translated into object code that uses dynamic dispatch to perform each of its
operations on type parameters. This is in stark contrast to the instantiation
model of C++ templates, where each new set of template arguments requires the
generic function or type to be compiled again. This model is important for
scalability of builds, so that the time to perform type-checking and code
generation scales with the amount of code written rather than the amount of code
instantiated. Moreover, it can lead to smaller binaries and a more flexible
language (generic functions can be “virtual”).

The translation model is fairly simple. Consider the generic find() we
implemented for lists, above:

func find<T : Comparable>(list : List<T>, value : T) -> Int {
  var index = 0
  var current = list.First
  while current is ListNode<T> { // now I'm just making stuff up
    if current.value.isEqual(value) { // okay: T is Comparable
      return index
    }
    current = current.Next
    index = index + 1
  }
  return -1
}





to translate this into executable code, we form a vtable for each of the
constraints on the generic function. In this case, we’ll have a vtable for
Comparable T. Every operation within the body of this generic function
type-checks to either an operation on some concrete type (e.g., the operations
on Int), to an operation within a protocol (which requires indirection through
the corresponding vtable), or to an operation on a generic type definition, all
of which can be emitted as object code.




Specialization

This implementation model lends itself to optimization when we know the specific
argument types that will be used when invoking the generic function. In this
case, some or all of the vtables provided for the constraints will effectively
be constants. By specializing the generic function (at compile-time, link-time,
or (if we have a JIT) run-time) for these types, we can eliminate the cost of
the virtual dispatch, inline calls when appropriate, and eliminate the overhead
of the generic system. Such optimizations can be performed based on heuristics,
user direction, or profile-guided optimization.




Existential Types and Generics

Both existential types and generics depend on dynamic dispatching based on
protocols. A value of an existential type (say, Comparable) is a pair (value,
vtable). ‘value’ stores the current value either directly (if it fits in the 3
words allocated to the value) or as a pointer to the boxed representation (if
the actual representation is larger than 3 words). By itself, this value cannot
be interpreted, because it’s type is not known statically, and may change due to
assignment. The vtable provides the means to manipulate the value, because it
provides a mapping between the protocols to which the existential type conforms
(which is known statically) to the functions that implementation that
functionality for the type of the value. The value, therefore, can only be
safely manipulated through the functions in this vtable.

A value of some generic type T uses a similar implementation model.  However,
the (value, vtable) pair is split apart: values of type T contain only the value
part (the 3 words of data), while the vtable is maintained as a separate value
that can be shared among all T’s within that generic function.




Overloading

Generic functions can be overloaded based entirely on constraints. For example,
consider a binary search algorithm:

func binarySearch<
   C : EnumerableCollection where C.Element : Comparable
>(collection : C, value : C.Element)
  -> C.EnumeratorType
{
  // We can perform log(N) comparisons, but EnumerableCollection
  // only supports linear walks, so this is linear time
}

protocol RandomAccessEnumerator : Enumerator {
  // splits a range in half, returning both halves
  func split() -> (Enumerator, Enumerator)
}

func binarySearch<
   C : EnumerableCollection
    where C.Element : Comparable,
              C.EnumeratorType: RandomAccessEnumerator
>(collection : C, value : C.Element)
  -> C.EnumeratorType
{
  // We can perform log(N) comparisons and log(N) range splits,
  // so this is logarithmic time
}





If binarySearch is called with a sequence whose range type conforms to
RandomAccessEnumerator, both of the generic functions match. However, the second
function is more specialized, because its constraints are a superset of the
constraints of the first function. In such a case, overloading should pick the
more specialized function.

There is a question as to when this overloading occurs. For example,
binarySearch might be called as a subroutine of another generic function with
minimal requirements:

func doSomethingWithSearch<
  C : EnumerableCollection where C.Element : Ordered
>(
  collection : C, value : C.Element
) -> C.EnumeratorType
{
  binarySearch(collection, value)
}





At the time when the generic definition of doSomethingWithSearch is
type-checked, only the first binarySearch() function applies, since we don’t
know that C.EnumeratorType conforms to RandomAccessEnumerator. However, when
doSomethingWithSearch is actually invoked, C.EnumeratorType might conform to the
RandomAccessEnumerator, in which case we’d be better off picking the second
binarySearch. This amounts to run-time overload resolution, which may be
desirable, but also has downsides, such as the potential for run-time failures
due to ambiguities and the cost of performing such an expensive operation at
these call sites. Of course, that cost could be mitigated in hot generic
functions via the specialization mentioned above.

Our current proposal for this is to decide statically which function is called
(based on similar partial-ordering rules as used in C++), and avoid run-time
overload resolution. If this proves onerous, we can revisit the decision later.




Parsing Issues

The use of angle brackets to supply arguments to a generic type, while familiar
to C++/C#/Java programmers, cause some parsing problems. The problem stems from
the fact that ‘<’, ‘>’, and ‘>>’ (the latter of which will show up in generic
types such as Array<Array<Int>>) match the ‘operator’ terminal in the grammar,
and we wish to continue using this as operators.

When we’re in the type grammar, this is a minor inconvenience for the parser,
because code like this:

var x : Array<Int>





will essentially parse the type as:

identifier operator Int operator





and verify that the operators are ‘<’ and ‘>’, respectively. Cases
involving <> are more interesting, because the type of:

var y : Array<Array<Int>>





is effectively parsed as:

identifier operator identifier operator identifier operator operator





by splitting the ‘>>’ operator token into two ‘>’ operator tokens.

However, this is manageable, and is already implemented for protocol composition
(protocol<>). The larger problem occurs at expression context, where the parser
cannot disambiguate the tokens:

Matrix<Double>(10, 10)





i.e.,:

identifier operator identifier operator unspaced_lparen integer- literal comma integer-literal rparen





which can be interpreted as either:

(greater_than
  (less_than
    (declref Matrix)
    (declref Double)
  (tuple
    (integer_literal 10)
    (integer_literal 10)))





or:

(constructor Matrix<Double>
  (tuple
    (integer_literal 10)
    (integer_literal 10)))





Both Java and C# have this ambiguity. C# resolves the ambiguity by looking at
the token after the closing ‘>’ to decide which way to go; Java seems to do the
same. We have a few options:


	Follow C# and Java and implement the infinite lookahead needed to make this
work. Note that we have true ambiguities, because one could make either of
the above parse trees well-formed.

	Introduce some kind of special rule for ‘<’ like we have for ‘(‘, such as: an
identifier followed by an unspaced ‘<’ is a type, while an identifier
followed by spacing and then ‘<’ is an expression, or

	Pick some syntax other than angle brackets, which is not ambiguous.  Note
that neither ‘(‘ nor ‘[‘ work, because they too have expression forms.

	Disambiguate between the two parses semantically.



We’re going to try a variant of #1, using a variation of the disambiguation
rule used in C#. Essentially, when we see:

identifier <





we look ahead, trying to parse a type parameter list, until parsing the type
parameter list fails or we find a closing ‘>’. We then look ahead an additional
token to see if the closing ‘>’ is followed by a ‘(‘, ‘.’, or closing bracketing
token (since types are most commonly followed by a constructor call or static
member access). If parsing the type parameter list succeeds, and the closing
angle bracket is followed by a ‘(‘, ‘.’, or closing bracket token, then the
‘<...>’ sequence is parsed as a generic parameter list; otherwise, the ‘<’
is parsed as an operator.







          

      

      

    

  

    
      
          
            
  
Logical Objects

Universal across programming languages, we have this concept of a value, which
is just some amount of fixed data.  A value might be the int 5, or a pair of the
bool true and the int -20, or an NSRect with the component values (0, 0, 400,
600), or whatever.

In imperative languages we have this concept of an object.  It’s an
unfortunately overloaded term; here I’m using it like the standards do, which is
to say that it’s a thing that holds a value, but which can be altered at any
time to hold a different value.  It’s tempting to use the word variable instead,
and a variable is indeed an object, but “variable” implies all this extra stuff,
like being its own independent, self-contained thing, whereas we want a word
that also covers fields and array elements and what-have-you.  So let’s just
suck it up and go with “object”.

You might also call these “r-value” and “l-value”.  These have their own
connotations that I don’t want to get into.  Stick with “value” and “object”.

In C and C++, every object is physical.  It’s actually a place in memory
somewhere.  It’s not necessarily easily addressable (because of bitfields), and
its lifetime may be tightly constrained (because of temporaries or
deallocation), but it’s always memory.

In Objective-C, properties and subscripting add an idea of a logical object.
The only way you can manipulate it is by calling a function (with unrestricted
extra arguments) to either fetch the current value or update it with a new
value.  The logical object doesn’t promise to behave like a physical object,
either: for example, you can set it, then immediately get it, and the result
might not match the value you set.

Swift has logical objects as well.  We have them in a few new places (global
objects can be logical), and sometimes we treat objects that are really physical
as logical (because resilience prevents us from assuming physicality), and we’re
considering making some restrictions on how different a logical object can be
from a physical object (although set-and-get would still be opaque), but
otherwise they’re pretty much just like they are in Objective-C.

That said, they do interact with some other language features in interesting
ways.

For example, methods on value types have a this parameter.  Usually parameters
are values, but this is actually an object: if I call a method on an object, and
the method modifies the value of this, I expect it to modify the object I called
the method on.  This is the high-level perspective of what [inout] really means:
that what we’re really passing as a parameter is an object, not a value.  With
one exception, everything that follows applies to any sort of [inout] parameter,
not just this on value types.  More on that exception later.

How do you actually pass an object, though, given that even physical objects
might not be addressable, but especially given that an object might be logical?

Well, we can always treat a physical object like a logical object.  It’s
possible to come up with ways to implement passing a logical object (pass a
pointer to a struct, the first value of which is a getter, the second value of
which is a setter, and the rest of which is opaque to the callee; the struct
must be passed to the getter and setter functions).  Unfortunately, the
performance implications would be terrible: accessing multiple fields would
involve multiple calls to the getter, each returning tons of extra information.
And getter and setter calls might be very expensive.

We could pass a hybrid format, using direct accesses when possible and a
getter/setter when not.  Unfortunately, that’s a lot of code bloat in every
single method implementation.

Or we can always pass a physical, addressable object.  This avoids penalizing
the fast case where the object is really physical, which is great.  For the case
where the object is logical, we just have to make it physical somehow.  That
means materialization: calling the getter, storing the result into temporary
memory, passing the temporary, and then calling the setter with the new value in
the temporary when the method call is done.  This last step is called writeback.

(About that one exception to this all applying equally to [inout]: in addition
to all this stuff about calling methods on different kinds of object, we also
want to support calling a method on a value.  This is also implemented with a
form of materialization, which looks just like the logical-object kind except
without writeback, because there’s nothing to write back to.  This is a special
rule that only applies to passing this, because we assume that most types will
have lots of useful methods that don’t involve writing to this, whereas we
assume that a function with an explicit [inout] parameter is almost certain to
want to write to it.)





          

      

      

    

  

    
      
          
            
  
Object Initialization


Warning

This document is incomplete and not up-to-date; it currently
describes the initialization model from Swift 1.0.
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Introduction

Object initialization is the process by which a new object is
allocated, its stored properties initialized, and any additional setup
tasks are performed, including allowing its superclass’s to perform
their own initialization. Object teardown is the reverse process,
performing teardown tasks, destroying stored properties, and
eventually deallocating the object.




Initializers

An initializer is responsible for the initialization of an
object. Initializers are introduced with the init keyword. For
example:

class A {
  var i: Int
  var s: String

  init int(i: Int) string(s: String) {
    self.i = i
    self.s = s
    completeInit()
  }

  func completeInit() { /* ... */ }
}





Here, the class A has an initializer that accepts an Int and a
String, and uses them to initialize its two stored properties,
then calls another method to perform other initialization tasks. The
initializer can be invoked by constructing a new A object:

var a = A(int: 17, string: "Seventeen")





The allocation of the new A object is implicit in the
construction syntax, and cannot be separated from the call to the
initializer.

Within an initializer, all of the stored properties must be
initialized (via an assignment) before self can be used in any
way. For example, the following would produce a compiler error:

init int(i: Int) string(s: String) {
  completeInit() // error: variable 'self.i' used before being initialized
  self.i = i
  self.s = s
}





A stored property with an initial value declared within the class is
considered to be initialized at the beginning of the initializer. For
example, the following is a valid initializer:

class A2 {
  var i: Int = 17
  var s: String = "Seventeen"

  init int(i: Int) string(s: String) {
    // okay: i and s are both initialized in the class
    completeInit()
  }

  func completeInit() { /* ... */ }
}





After all stored properties have been initialized, one is free to use
self in any manner.


Designated Initializers

There are two kinds of initializers in Swift: designated initializers
and convenience initializers. A designated initializer is
responsible for the primary initialization of an object, including the
initialization of any stored properties, chaining to one of its
superclass’s designated initializers via a super.init call (if
there is a superclass), and performing any other initialization tasks,
in that order. For example, consider a subclass B of A:

class B : A {
  var d: Double

  init int(i: Int) string(s: String) {
    self.d = Double(i)            // initialize stored properties
    super.init(int: i, string: s) // chain to superclass
    completeInitForB()            // perform other tasks
  }

  func completeInitForB() { /* ... */ }
}





Consider the following construction of an object of type B:

var b = B(int: 17, string: "Seventeen")






Note

Swift differs from many other languages in that it requires one to
initialize stored properties before chaining to the superclass
initializer. This is part of Swift’s memory safety guarantee, and
is discussed further in the section on Three-Phase
Initialization.



Initialization proceeds in several steps:


	An object of type B is allocated by the runtime.

	B‘s initializer initializes the stored property d to
17.0.

	B‘s initializer chains to A‘s initializer.

	A‘s initializer initialize’s the stored properties i and
s‘.

	A‘s initializer calls completeInit(), then returns.

	B‘s initializer calls completeInitForB(), then returns.



A class generally has a small number of designated initializers, which
act as funnel points through which the object will be
initialized. All of the designated initializers for a class must be
written within the class definition itself, rather than in an
extension, because the complete set of designated initializers is part
of the interface contract with subclasses of a class.

The other, non-designted initializers of a class are called
convenience initializers, which tend to provide additional
initialization capabilities that are often more convenient for common
tasks.




Convenience Initializers

A convenience initializer is an initializer that provides an
alternative interface to the designated initializers of a class. A
convenience initializer is denoted by the return type Self in the
definition. Unlike designated initializers, convenience initializers
can be defined either in the class definition itself or within an
extension of the class. For example:

extension A {
  init() -> Self {
    self.init(int: 17, string: "Seventeen")
  }
}





A convenience initializer cannot initialize the stored properties of
the class directly, nor can it invoke a superclass initializer via
super.init. Rather, it must dispatch to another initializer
using self.init, which is then responsible for initializing the
object. A convenience initializer is not permitted to access self
(or anything that depends on self, such as one of its properties)
prior to the self.init call, although it may freely access
self after self.init.

Convenience initializers and designated initializers can both be used
to construct objects, using the same syntax. For example, the A
initializer above can be used to build a new A object without any
arguments:

var a2 = A() // uses convenience initializer








Initializer Inheritance

One of the primary benefits of convenience initializers is that they
can be inherited by subclasses. Initializer inheritance eliminates the
need to repeat common initialization code—such as initial values of
stored properties not easily written in the class itself, or common
registration tasks that occur during initialization—while using the
same initialization syntax. For example, this allows a B object to
be constructed with no arguments by using the inherited convenience
initializer defined in the previous section:

var b2 = B()





Initialization proceeds as follows:


	A B object is allocated by the runtime.

	A‘s convenience initializer init() is invoked.

	A‘s convenience initializer dispatches to init int:string:
via the self.init call. This call dynamically resolves to
B‘s designated initializer.

	B‘s designated initializer initializes the stored property
d to 17.0.

	B‘s designated initializer chains to A‘s designated
initializer.

	A‘s designated initializer initialize’s the stored properties
i and s‘.

	A‘s designated initializer calls completeInit(), then
returns.

	B‘s designated initializer calls completeInitForB(), then
returns.

	A‘s convenience initializer returns.



Convenience initializers are only inherited under certain
circumstances. Specifically, for a given subclass to inherit the
convenience initializers of its superclass, the subclass must override
each of the designated initializers of its superclass. For example
B provides the initializer init int:string:, which overrides
A‘s designated initializer init int:string: because the
initializer name and parameters are the same. If we had some other
subclass OtherB of A that did not provide such an override, it
would not inherit A‘s convenience initializers:

class OtherB : A {
  var d: Double

  init int(i: Int) string(s: String) double(d: Double) {
    self.d = d                    // initialize stored properties
    super.init(int: i, string: s) // chain to superclass
  }
}

var ob = OtherB()   // error: A's convenience initializer init() not inherited






Note

The requirement that a subclass override all of the designated
initializers of its superclass to enable initializer inheritance is
crucial to Swift’s memory safety model. See Initializer
Inheritance Model for more information.



Note that a subclass may have different designated initializers from
its superclass. This can occur in a number of ways. For example, the
subclass might override one of its superclass’s designated
initializers with a convenience initializer:

class YetAnotherB : A {
  var d: Double

  init int(i: Int) string(s: String) -> Self {
    self.init(int: i, string: s, double: Double(i)) // dispatch
  }

  init int(i: Int) string(s: String) double(d: Double) {
    self.d = d                    // initialize stored properties
    super.init(int: i, string: s) // chain to superclass
  }
}

var yab = YetAnotherB()   // okay: YetAnotherB overrides all of A's designated initializers





In other cases, it’s possible that the convenience initializers of the
superclass simply can’t be made to work, because the subclass
initializers require additional information provided via a
parameter that isn’t present in the convenience initializers of the
superclass:

class PickyB : A {
  var notEasy: NoEasyDefault

  init int(i: Int) string(s: String) notEasy(NoEasyDefault) {
    self.notEasy = notEasy
    super.init(int: i, string: s) // chain to superclass
  }
}





Here, PickyB has a stored property of a type NoEasyDefault
that can’t easily be given a default value: it has to be provided as a
parameter to one of PickyB‘s initializers. Therefore, PickyB
takes over responsibility for its own initialization, and
none of A‘s convenience initializers will be inherited into
PickyB.




Synthesized Initializers

When a particular class does not specify any designated initializers,
the implementation will synthesize initializers for the class when all
of the class’s stored properties have initial values in the class. The
form of the synthesized initializers depends on the superclass (if
present).

When a superclass is present, the compiler synthesizes a new
designated initializer in the subclass for each designated initializer
of the superclass. For example, consider the following class C:

class C : B {
  var title: String = "Default Title"
}





The superclass B has a single designated initializer,:

init int(i: Int) string(s: String)





Therefore, the compiler synthesizes the following designated
initializer in C, which chains to the corresponding designated
initializer in the superclass:

init int(i: Int) string(s: String) {
  // title is already initialized in the class C
  super.init(int: i, string: s)
}





The result of this synthesis is that all designated initializers of
the superclass are (automatically) overridden in the subclass,
becoming designated initializers of the subclass as well. Therefore,
any convenience initializers in the superclass are also inherited,
allowing the subclass (C) to be constructed with the same
initializers as the superclass (B):

var c1 = C(int: 17, string: "Seventeen")
var c2 = C()





When the class has no superclass, a default initializer (with no
parameters) is implicitly defined:

class D {
  var title = "Default Title"

  /* implicitly defined */
  init() { }
}

var d = D() // uses implicitly-defined default initializer








Required Initializers

Objects are generally constructed with the construction syntax
T(...) used in all of the examples above, where T is the name
of the type. However, it is occasionally useful to construct an object
for which the actual type is not known until runtime. For example, one
might have a View class that expects to be initialized with a
specific set of coordinates:

struct Rect {
  var origin: (Int, Int)
  var dimensions: (Int, Int)
}

class View {
  init frame(Rect) { /* initialize view */ }
}





The actual initialization of a subclass of View would then be
performed at runtime, with the actual subclass being determined via
some external file that describes the user interface. The actual
instantiation of the object would use a type value:

func createView(viewClass: View.Type, frame: Rect) -> View {
  return viewClass(frame: frame) // error: 'init frame:' is not 'required'
}





The code above is invalid because there is no guarantee that a given
subclass of View will have an initializer init frame:, because
the subclass might have taken over its own initialization (as with
PickyB, above). To require that all subclasses provide a
particular initializer, use the required attribute as follows:

class View {
  @required init frame(Rect) {
    /* initialize view */
  }
}

func createView(viewClass: View.Type, frame: Rect) -> View {
  return viewClass(frame: frame) // okay
}





The required attribute allows the initializer to be used to
construct an object of a dynamically-determined subclass, as in the
createView method. It places the (transitive) requirement on all
subclasses of View to provide an initializer init frame:. For
example, the following Button subclass would produce an error:

class Button : View {
  // error: 'Button' does not provide required initializer 'init frame:'.
}





The fix is to implement the required initializer in Button:

class Button : View {
  @required init frame(Rect) { // okay: satisfies requirement
    super.init(frame: frame)
  }
}








Initializers in Protocols

Initializers may be declared within a protocol. For example:

protocol DefaultInitializable {
  init()
}






Note

Initializers in protocols have not yet been implemented. Stay tuned.



A class can satisfy this requirement by providing a required
initializer. For example, only the first of the two following classes
conforms to its protocol:

class DefInit : DefaultInitializable {
  @required init() { }
}

class AlmostDefInit : DefaultInitializable {
  init() { } // error: initializer used for protocol conformance must be 'required'
}





The required requirement ensures that all subclasses of the class
declaring conformance to the protocol will also have the initializer,
so they too will conform to the protocol. This allows one to construct
objects given type values of protocol type:

func createAnyDefInit(typeVal: DefaultInitializable.Type) -> DefaultInitializable {
  return typeVal()
}








De-initializers

While initializers are responsible for setting up an object’s state,
de-initializers are responsible for tearing down that state. Most
classes don’t require a de-initializer, because Swift automatically
releases all stored properties and calls to the superclass’s
de-initializer. However, if your class has allocated a resource that
is not an object (say, a Unix file descriptor) or has registered
itself during initialization, one can write a de-initializer using
deinit:

class FileHandle {
  var fd: Int32

  init withFileDescriptor(fd: Int32) {
    self.fd = fd
  }

  deinit {
    close(fd)
  }
}





The statements within a de-initializer (here, the call to close)
execute first, then the superclass’s de-initializer is
called. Finally, stored properties are released and the object is
deallocated.




Methods Returning Self

A class method can have the special return type Self, which refers
to the dynamic type of self. Such a method guarantees that it will
return an object with the same dynamic type as self. One of the
primary uses of the Self return type is for factory methods:

extension View {
  class func createView(frame: Rect) -> Self {
    return self(frame: frame)
  }
}






Note

The return type Self fulfills the same role as Objective-C’s
instancetype, although Swift provides stronger type checking for
these methods.



Within the body of this class method, the implicit parameter self
is a value with type View.Type, i.e., it’s a type value for the
class View or one of its subclasses. Therefore, the restrictions
are the same as for any value of type View.Type: one can call
other class methods and construct new objects using required
initializers of the class, among other things. The result returned
from such a method must be derived from the type of Self. For
example, it cannot return a value of type View, because self
might refer to some subclass of View.

Instance methods can also return Self. This is typically used to
allow chaining of method calls by returning Self from each method,
as in the builder pattern:

class DialogBuilder {
  func setTitle(title: String) -> Self {
    // set the title
    return self;
  }

  func setBounds(frame: Rect) -> Self {
    // set the bounds
    return self;
  }
}

var builder = DialogBuilder()
                .setTitle("Hello, World!")
                .setBounds(Rect(0, 0, 640, 480))










Memory Safety

Swift aims to provide memory safety by default, and much of the design
of Swift’s object initialization scheme is in service of that
goal. This section describes the rationale for the design based on the
memory-safety goals of the language.


Three-Phase Initialization

The three-phase initialization model used by Swift’s initializers
ensures that all stored properties get initialized before any code can
make use of self. This is important uses of self—say,
calling a method on self—could end up referring to stored
properties before they are initialized. Consider the following
Objective-C code, where instance variables are initialized after the
call to the the superclass initializer:

@interface A : NSObject
- (instancetype)init;
- (void)finishInit;
@end

@implementation A
- (instancetype)init {
  self = [super init];
  if (self) {
    [self finishInit];
  }
  return self;
}
@end

@interface B : A
@end

@implementation B {
  NSString *ivar;
}

- (instancetype)init {
  self = [super init];
  if (self) {
    self->ivar = @"Default name";
  }
  return self;
}

- (void) finishInit {
  NSLog(@"ivar has the value %@\n", self->ivar);
}
@end






Notes

In Objective-C, +alloc zero-initializes all of the instance
variables, which gives them predictable behavior before the init
method gets to initialize them. Given that Objective-C is fairly
resilient to nil objects, this default behavior eliminates (or
hides) many such initialization bugs. In Swift, however, the
zero-initialized state is less likely to be valid, and the memory
safety goals are stronger, so zero-initialization does not suffice.



When initializing a B object, the NSLog statement will print:

ivar has the value (null)





because -[B finishInit] executes before B has had a chance to
initialize its instance variables. Swift initializers avoid this issue
by splitting each initializer into three phases:

1. Initialize stored properties. In this phase, the compiler verifies
that self is not used except when writing to the stored properties
of the current class (not its superclasses!). Additionally, this
initialization directly writes to the storage of the stored
properties, and does not call any setter or willSet/didSet
method. In this phase, it is not possible to read any of the stored
properties.

2. Call to superclass initializer, if any. As with the first step,
self cannot be accessed at all.

3. Perform any additional initialization tasks, which may call methods
on self, access properties, and so on.

Note that, with this scheme, self cannot be used until the
original class and all of its superclasses have initialized their
stored properties, closing the memory safety hole.




Initializer Inheritance Model

FIXME: To be written
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Pattern Matching


Warning

This document was used in designing the pattern-matching features
of Swift 1.0. It has not been kept to date and does not describe the current
or planned behavior of Swift.




Elimination rules

When type theorists consider a programming language, we break it down like this:


	What are the kinds of fundamental and derived types in the language?

	For each type, what are its introduction rules, i.e. how do you get
values of that type?

	For each type, what are its elimination rules, i.e. how do you use
values of that type?



Swift has a pretty small set of types right now:


	Fundamental types: currently i1, i8, i16, i32, and i64;
float and double; eventually maybe others.

	Function types.

	Tuples. Heterogenous fixed-length products. Swift’s system
provides two basic kinds of element: positional and labelled.

	Arrays. Homogenous fixed-length aggregates.

	Algebraic data types (ADTs), introduce by enum.  Nominal closed
disjoint unions of heterogenous types.

	Struct types.  Nominal heterogenous fixed-length products.

	Class types.  Nominal, subtypeable heterogenous fixed-length products
with identity.

	Protocol and protocol-composition types.



In addition, each of the nominal types can be made generic; this
doesn’t affect the overall introduction/elimination design because an
“unapplied” generic type isn’t first-class (intentionally), and an
“applied” generic type behaves essentially like a non-generic type
(also intentionally).

The point is that adding any other kind of type (e.g. SIMD vectors)
means that we need to consider its intro/elim rules.

For most of these, intro rules are just a question of picking syntax, and we
don’t really need a document for that. So let’s talk elimination. Generally, an
elimination rule is a way at getting back to the information the intro rule(s)
wrote into the value. So what are the specific elimination rules for these
types? How do we use them, other than in type-generic ways like passing them as
arguments to calls?

Functions are used by calling them. This is something of a special case:
some values of function type may carry data, there isn’t really a useful model
for directly accessing it. Values of function type are basically completely
opaque, except that we do provide thin vs. thick function types, which is
potentially something we could pattern-match on, although many things can
introduce thunks and so the result would not be reliable.

Scalars are used by feeding them to primitive binary operators.  This is
also something of a special case, because there’s no useful way in which scalars
can be decomposed into separate values.

Tuples, structs, and classes are used by projecting out
their elements.  Classes may also be turned into an object of a
supertype (which is always a class).

Arrays are used by projecting out slices and elements.

Existentials are used by performing one of the operations that the
type is known to support.

ADTs are used by projecting out elements of the current alternative, but how
we determine the current alternative?




Alternatives for alternatives

I know of three basic designs for determining the current alternative of an ADT:


	Visitor pattern: there’s some way of declaring a method on the full ADT and
then implementing it for each individual alternative. You do this in OO
languages mostly because there’s no direct language support for closed
disjoint unions (as opposed to open disjoint unions, which subclassing lets
you achieve at some performance cost).
	plus: doesn’t require language support

	plus: easy to “overload” and provide different kinds of pattern matching on
the same type

	plus: straightforward to add interesting ADT-specific logic, like matching a
CallExpr instead of each of its N syntactic forms

	plus: simple form of exhaustiveness checking

	minus: cases are separate functions, so data and control flow is awkward

	minus: lots of boilerplate to enable

	minus: lots of boilerplate to use

	minus: nested pattern matching is awful





	Query functions: dynamic_cast, dyn_cast, isa, instanceof
	plus: easy to order and mix with other custom conditions

	plus: low syntactic overhead for testing the alternative if you don’t need
to actually decompose

	minus: higher syntactic overhead for decomposition
	isa/instanceof pattern requires either a separate cast or unsafe
operations later

	dyn_cast pattern needs a fresh variable declaration, which is very awkward
in complex conditions





	minus: exhaustiveness checking is basically out the window

	minus: some amount of boilerplate to enable





	Pattern matching
	plus: no boilerplate to enable

	plus: hugely reduced syntax to use if you want a full decomposition

	plus: compiler-supported exhaustiveness checking

	plus: nested matching is natural

	plus: with pattern guards, natural mixing of custom conditions

	minus: syntactic overkill to just test for a specific alternative
(e.g. to filter it out)

	minus: needs boilerplate to project out a common member across
multiple/all alternatives

	minus: awkward to group alternatives (fallthrough is a simple option
but has issues)

	minus: traditionally completely autogenerated by compiler and thus
not very flexible

	minus: usually a new grammar production that’s very ambiguous with
the expression grammar

	minus: somewhat fragile against adding extra data to an alternative







I feel that this strongly points towards using pattern matching as the basic way
of consuming ADTs, maybe with special dispensations for querying the alternative
and projecting out common members.

Pattern matching was probably a foregone conclusion, but I wanted to spell out
that having ADTs in the language is what really forces our hand because the
alternatives are so bad. Once we need pattern-matching, it makes sense to
provide patterns for the other kinds of types as well.




Selection statement

This is the main way we expect users to employ non-obvious pattern- matching. We
obviously need something with statement children, so this has to be a
statement. That’s also fine because this kind of full pattern match is very
syntactically heavyweight, and nobody would want to embed it in the middle of an
expression. We also want a low-weight matching expression, though, for
relatively simple ADTs:

stmt            ::= stmt-switch
stmt-switch     ::= 'switch' expr '{' switch-group+ '}'
switch-group    ::= case-introducer+ stmt-brace-item+
case-introducer ::= 'case' match-pattern-list case-guard? ':'
case-introducer ::= 'default' case-guard? ':'
case-guard      ::= 'where' expr
match-pattern-list ::= match-pattern
match-pattern-list ::= match-pattern-list ',' match-pattern





We can get away with using “switch” here because we’re going to unify
both values and patterns under match-pattern.  The works chiefly by
making decompositional binding a bit more awkward, but has the major
upside of reducing the likelihood of dumb mistakes (rebinding ‘true’,
for example), and it means that C-looking switches actually match our
semantics quite closely.  The latter is something of a priority: a C
switch over an enum is actually pretty elegant — well, except for
all the explicit scoping and ‘break’ statements, but the switching
side of it feels clean.


Default

I keep going back and forth about having a “default” case-introducer.
On the one hand, I kindof want to encourage total matches.  On the
other hand, (1) having it is consistent with C, (2) it’s not an
unnatural style, and (3) there are cases where exhaustive switching
isn’t going to be possible.  We can certainly recommend complete
matches in switches, though.

If we do have a ‘default’, I think it makes the most sense for it to be
semantically a complete match and therefore require it to be
positioned at the end (on pain of later matches being irrelevant).
First, this gives more sensible behavior to ‘default where
x.isPurple()’, which really doesn’t seem like it should get reordered
with the surrounding cases; and second, it makes the matching story
very straightforward.  And users who like to put ‘default:’ at the top
won’t accidentally get unexpected behavior because coverage checking
will immediately complain about the fact that every case after an
unguarded ‘default’ is obviously dead.




Case groups

A case-group lets you do the same thing for multiple cases without an
extra syntactic overhead (like a ‘fallthrough’ after every case).  For
some types (e.g. classic functional linked lists) this is basically
pointless, but for a lot of other types (Int, enums, etc.) it’s
pervasive.

The most important semantic design point here is about bound variables
in a grouped case, e.g. (using ‘var’ as a “bind this variable” introducer;
see the pattern grammar):

switch (pair) {
case (var x, 0):
case (0, var y):
  return 1
case (var x, var y)
  return foo(x-1,y) + foo(x,y-1)
}





It’s tempting to just say that an unsound name binding (i.e. a name
not bound in all cases or bound to values of different types) is just
always an error, but I think that’s probably not the way to go.  There
are two things I have in mind here: first, these variables can be
useful in pattern guards even if they’re not used in the case block
itself, and second, a well-chosen name can make a pattern much more
self-documenting.  So I think it should only be an error to refer to
an unsound name binding.

The most important syntactic design point here is whether to require
(or even allow) the ‘case’ keyword to be repeated for each case.  In
many cases, it can be much more compact to allow a comma-separated
list of patterns after ‘case’:

switch (day) {
case .Terrible, .Horrible, .NoGood, .VeryBad:
  abort()
case .ActuallyPrettyReasonableWhenYouLookBackOnIt:
  continue
}





or even more so:

case 0...2, 5...10, 14...18, 22...:
  flagConditionallyAcceptableAge()





On the other hand, if this list gets really long, the wrapping gets a
little weird:

case .Terrible, .Horrible, .NoGood, .VeryBad,
     .Awful, .Dreadful, .Appalling, .Horrendous,
     .Deplorable, .Unpleasant, .Ghastly, .Dire:
  abort()





And while I think pattern guards should be able to apply to multiple
cases, it would be nice to allow different cases in a group to have
different pattern guards:

case .None:
case .Some(var c) where c.isSpace() || c.isASCIIControl():
  skipToEOL()





So really I think we should permit multiple ‘case’ introducers:

case .Terrible, .Horrible, .NoGood, .VeryBad:
case .Awful, .Dreadful, .Appalling, .Horrendous:
case .Deplorable, .Unpleasant, .Ghastly, .Dire:
  abort()





With the rule that a pattern guard can only use bindings that are
sound across its guarded patterns (those within the same ‘case’), and
the statement itself can only use bindings that are sound across all
of the cases.  A reference that refers to an unsound binding is an
error; lookup doesn’t just ignore the binding.




Scoping

Despite the lack of grouping braces, the semantics are that the statements in
each case-group form their own scope, and falling off the end causes control to
resume at the end of the switch statement — i.e. “implicit break”, not “implicit
fallthrough”.

Chris seems motivated to eventually add an explicit ‘fallthrough’
statement. If we did this, my preference would be to generalize it by
allowing the match to be reperformed with a new value, e.g.
fallthrough(something), at least optionally.  I think having
local functions removes a lot of the impetus, but not so much as to
render the feature worthless.

Syntactically, braces and the choice of case keywords are all bound
together. The thinking goes as follows. In Swift, statement scopes are always
grouped by braces. It’s natural to group the cases with braces as well. Doing
both lets us avoid a ‘case’ keyword, but otherwise it leads to ugly style,
because either the last case ends in two braces on the same line or cases have
to further indented. Okay, it’s easy enough to not require braces on the match,
with the grammar saying that cases are just greedily consumed — there’s no
ambiguity here because the switch statement is necessarily within braces. But
that leaves the code without a definitive end to the cases, and the closing
braces end up causing a lot of unnecessary vertical whitespace, like so:

switch (x)
case .foo {
  …
}
case .bar {
  …
}





So instead, let’s require the switch statement to have braces, and
we’ll allow the cases to be written without them:

switch (x) {
case .foo:
  …
case .bar:
  …
}





That’s really a lot prettier, except it breaks the rule about always grouping
scopes with braces (we definitely want different cases to establish different
scopes). Something has to give, though.

We require the trailing colon because it’s a huge cue for separating
things, really making single-line cases visually appealing, and the
fact that it doesn’t suggest closing punctuation is a huge boon.  It’s
also directly precedented in C, and it’s even roughly the right
grammatical function.




Case selection semantics

The semantics of a switch statement are to first evaluate the value
operand, then proceed down the list of case-introducers and execute
the statements for the switch-group that had the first satisfied
introducer.

It is an error if a case-pattern can never trigger because earlier
cases are exhaustive.  Some kinds of pattern (like ‘default’ cases
and ‘_’) are obviously exhaustive by themselves, but other patterns
(like patterns on properties) can be much harder to reason about
exhaustiveness for, and of course pattern guards can make this
outright undecidable.  It may be easiest to apply very straightforward
rules (like “ignore guarded patterns”) for the purposes of deciding
whether the program is actually ill-formed; anything else that we can
prove is unreachable would only merit a warning.  We’ll probably
also want a way to say explicitly that a case can never occur (with
semantics like llvm_unreachable, i.e. a reliable runtime failure unless
that kind of runtime safety checking is disabled at compile-time).

A ‘default’ is satisfied if it has no guard or if the guard evaluates to true.

A ‘case’ is satisfied if the pattern is satisfied and, if there’s a guard,
the guard evaluates to true after binding variables.  The guard is not
evaluated if the pattern is not fully satisfied.  We’ll talk about satisfying
a pattern later.




Non-exhaustive switches

Since falling out of a statement is reasonable behavior in an
imperative language — in contrast to, say, a functional language where
you’re in an expression and you need to produce a value — there’s a
colorable argument that non-exhaustive matches should be okay.  I
dislike this, however, and propose that it should be an error to
make an non-exhaustive switch; people who want non-exhaustive matches
can explicitly put in default cases.
Exhaustiveness actually isn’t that difficult to check, at least over
ADTs.  It’s also really the behavior that I would expect from the
syntax, or at least implicitly falling out seems dangerous in a way
that nonexhaustive checking doesn’t.  The complications with checking
exhaustiveness are pattern guards and matching expressions. The
obvious conservatively-safe rule is to say “ignore cases with pattern
guards or matching expressions during exhaustiveness checking”, but
some people really want to write “where x < 10” and “where x >= 10”,
and I can see their point. At the same time, we really don’t want to
go down that road.






Other uses of patterns

Patterns come up (or could potentially come up) in a few other places
in the grammar:


Var bindings

Variable bindings only have a single pattern, which has to be exhaustive, which
also means there’s no point in supporting guards here. I think we just get
this:

decl-var ::= 'var' attribute-list? pattern-exhaustive value-specifier








Function parameters

The functional languages all permit you to directly pattern-match in the
function declaration, like this example from SML:

fun length nil = 0
  | length (a::b) = 1 + length b





This is really convenient, but there’s probably no reasonable analogue in
Swift. One specific reason: we want functions to be callable with keyword
arguments, but if you don’t give all the parameters their own names, that won’t
work.

The current Swift approximation is:

func length(list : List) : Int {
  switch list {
    case .nil: return 0
    case .cons(_,var tail): return 1 + length(tail)
  }
}





That’s quite a bit more syntax, but it’s mostly the extra braces from the
function body. We could remove those with something like this:

func length(list : List) : Int = switch list {
  case .nil: return 0
  case .cons(_,var tail): return 1 + length(tail)
}





Anyway, that’s easy to add later if we see the need.




Assignment

This is a bit iffy. It’s a lot like var bindings, but it doesn’t have a keyword,
so it’s really kindof ambiguous given the pattern grammar.

Also, l-value patterns are weird. I can come up with semantics for this, but I
don’t know what the neighbors will think:

var perimeter : double
.feet(x) += yard.dimensions.height // returns Feet, which has one constructor, :feet.
.feet(x) += yard.dimensions.width





It’s probably better to just have l-value tuple expressions and not
try to work in arbitrary patterns.




Pattern-match expression

This is an attempt to provide that dispensation for query functions we were
talking about.

I think this should bind looser than any binary operators except assignments;
effectively we should have:

expr-binary ::= # most of the current expr grammar

expr ::= expr-binary
expr ::= expr-binary 'is' expr-primary pattern-guard?





The semantics are that this evaluates to true if the pattern and
pattern-guard are satisfied.


‘is’ or ‘isa’

Perl and Ruby use ‘=~’ as the regexp pattern-matching operator, which
is both obscure and really looks like an assignment operator, so I’m
stealing Joe’s ‘is’ operator, which is currently used for dynamic
type-checks.  I’m of two minds about this:  I like ‘is’ a lot for
value-matching, but not for dynamic type-checks.

One possibility would be to use ‘is’ as the generic pattern-matching
operator but use a different spelling (like ‘isa’) for dynamic
type-checks, including the ‘is’ pattern.  This would give us
“x isa NSObject” as an expression and “case isa NSObject:” as a
case selector, both of which I feel read much better.  But in this
proposal, we just use a single operator.

Other alternatives to ‘is’ include ‘matches’ (reads very naturally but
is somewhat verbose) or some sort of novel operator like ‘~~’.

Note that this impacts a discussion in the section below about
expression patterns.




Dominance

I think that this feature is far more powerful if the name bindings,
type-refinements, etc. from patterns are available in code for which a
trivial analysis would reveal that the result of the expression is
true.  For example:

if s is Window where x.isVisible {
  // can use Window methods on x here
}





Taken a bit further, we can remove the need for ‘where’ in the
expression form:

if x is Window && x.isVisible { ... }





That might be problematic without hard-coding the common
control-flow operators, though.  (As well as hardcoding some
assumptions about Bool.convertToLogicValue...)








Pattern grammar

The usual syntax rule from functional languages is that the pattern
grammar mirrors the introduction-rule expression grammar, but parses a
pattern wherever you would otherwise put an expression.  This means
that, for example, if we add array literal expressions, we should also
add a corresponding array literal pattern. I think that principle is
very natural and worth sticking to wherever possible.


Two kinds of pattern

We’re blurring the distinction between patterns and expressions a lot
here.  My current thinking is that this simplifies things for the
programmer — the user concept becomes basically “check whether we’re
equal to this expression, but allow some holes and some more complex
‘matcher’ values”.  But it’s possible that it instead might be really
badly confusing.  We’ll see!  It’ll be fun!

This kindof forces us to have parallel pattern grammars for the two
major clients:


	Match patterns are used in switch and matches, where
we’re decomposing something with a real possibility of failing.
This means that expressions are okay in leaf positions, but that
name-bindings need to be explicitly advertised in some way to
reasonably disambiguate them from expressions.

	Exhaustive patterns are used in var declarations
and function signatures.  They’re not allowed to be non-exhaustive,
so having a match expression doesn’t make any sense.  Name bindings
are common and so shouldn’t be penalized.



You might think that having a “pattern” as basic as foo mean
something different in two different contexts would be confusing, but
actually I don’t think people will generally think of these as the
same production — you might if you were in a functional language where
you really can decompose in a function signature, but we don’t allow
that, and I think that will serve to divide them in programmers’ minds.
So we can get away with some things. :)




Binding patterns

In general, a lot of these productions are the same, so I’m going to
talk about *-patterns, with some specific special rules that only
apply to specific pattern kinds.

*-pattern ::= '_'





A single-underscore identifier is always an “ignore” pattern.  It
matches anything, but does not bind it to a variable.

exhaustive-pattern ::= identifier
match-pattern ::= '?' identifier





Any more complicated identifier is a variable-binding pattern.  It is
illegal to bind the same identifier multiple times within a pattern.
However, the variable does come into scope immediately, so in a match
pattern you can have a latter expression which refers to an
already-bound variable.  I’m comfortable with constraining this to
only work “conveniently” left-to-right and requiring more complicated
matches to use guard expressions.

In a match pattern, variable bindings must be prefixed with a ? to
disambiguate them from an expression consisting of a variable
reference.  I considered using ‘var’ instead, but using punctuation
means we don’t need a space, which means this is much more compact in
practice.




Annotation patterns

exhaustive-pattern ::= exhaustive-pattern ':' type





In an exhaustive pattern, you can annotate an arbitrary sub-pattern
with a type.  This is useful in an exhaustive pattern: the type of a
variable isn’t always inferrable (or correctly inferrable), and types
in function signatures are generally outright required.  It’s not as
useful in a match pattern, and the colon can be grammatically awkward
there, so we disallow it.




‘is’ patterns

match-pattern ::= 'is' type





This pattern is satisfied if the dynamic type of the matched value
“satisfies” the named type:



	if the named type is an Objective-C class type, the dynamic type
must be a class type, and an ‘isKindOf:’ check is performed;

	if the named type is a Swift class type, the dynamic type must be
a class type, and a subtype check is performed;

	if the named type is a metatype, the dynamic type must be a metatype,
and the object type of the dynamic type must satisfy the object type
of the named type;

	otherwise the named type must equal the dynamic type.






This inquiry is about dynamic types; archetypes and existentials are
looked through.

The pattern is ill-formed if it provably cannot be satisfied.

In a ‘switch’ statement, this would typically appear like this:

case is NSObject:





It can, however, appear in recursive positions:

case (is NSObject, is NSObject):






Ambiguity with type value matching

There is a potential point of confusion here with dynamic type
checking (done by an ‘is’ pattern) vs. value equality on type objects
(done by an expression pattern where the expression is of metatype
type.  This is resolved by the proposal (currently outstanding but
generally accepted, I think) to disallow naked references to type
constants and instead require them to be somehow decorated.

That is, this pattern requires the user to write something like this:

case is NSObject:





It is quite likely that users will often accidentally write something
like this:

case NSObject:





It would be very bad if that were actually accepted as a valid
expression but with the very different semantics of testing equality
of type objects.  For the most part, type-checking would reject that
as invalid, but a switch on (say) a value of archetype type would
generally work around that.

However, we have an outstanding proposal to generally forbid ‘NSObject’
from appearing as a general expression;  the user would have to decorate
it like the following, which would let us eliminate the common mistake:

case NSObject.type:








Type refinement

If the value matched is immediately the value of a local variable, I
think it would be really useful if this pattern could introduce a type
refinement within its case, so that the local variable would have the
refined type within that scope.  However, making this kind of type
refinement sound would require us to prevent there from being any sort
of mutable alias of the local variable under an unrefined type.
That’s usually going to be fine in Swift because we usually don’t
permit the address of a local to escape in a way that crosses
statement boundaries.  However, closures are a major problem for this
model.  If we had immutable local bindings — and, better yet, if
they were the default — this problem would largely go away.

This sort of type refinement could also be a problem with code like:

while expr is ParenExpr {
  expr = expr.getSubExpr()
}





It’s tricky.






“Call” patterns

match-pattern ::= match-pattern-identifier match-pattern-tuple?
match-pattern-identifier ::= '.' identifier
match-pattern-identifier ::= match-pattern-identifier-tower
match-pattern-identifier-tower ::= identifier
match-pattern-identifier-tower ::= identifier
match-pattern-identifier-tower ::= match-pattern-identifier-tower '.' identifier





A match pattern can resemble a global name or a call to a global name.
The global name is resolved as normal, and then the pattern is
interpreted according to what is found:


	If the name resolves to a type, then the dynamic type of the matched
value must match the named type (according to the rules below for
‘is’ patterns).  It is okay for this to be trivially true.

In addition, there must be an non-empty arguments clause, and each
element in the clause must have an identifier.  For each element,
the identifier must correspond to a known property of the named
type, and the value of that property must satisfy the element
pattern.



	If the name resolves to a enum element, then the dynamic type
of the matched value must match the enum type as discussed above,
and the value must be of the specified element.  There must be
an arguments clause if and only if the element has a value type.
If so, the value of the element is matched against the clause
pattern.



	Otherwise, the argument clause (if present) must also be
syntactically valid as an expression, and the entire pattern is
reinterpreted as an expression.





This is all a bit lookup-sensitive, which makes me uncomfortable, but
otherwise I think it makes for attractive syntax.  I’m also a little
worried about the way that, say, f(x) is always an expression
but A(x) is a pattern.  Requiring property names when matching
properties goes some way towards making that okay.

I’m not totally sold on not allowing positional matching against
struct elements; that seems unfortunate in cases where positionality
is conventionally unambiguous, like with a point.

Matching against struct types requires arguments because this is
intended to be used for structure decomposition, not dynamic type
testing.  For the latter, an ‘is’ pattern should be used.




Expression patterns

match-pattern ::= expression





When ambiguous, match patterns are interpreted using a
pattern-specific production.  I believe it should be true that, in
general, match patterns for a production accept a strict superset of
valid expressions, so that (e.g.) we do not need to disambiguate
whether an open paren starts a tuple expression or a tuple pattern,
but can instead just aggressively parse as a pattern.  Note that
binary operators can mean that, using this strategy, we sometimes have
to retroactively rewrite a pattern as an expression.

It’s always possible to disambiguate something as an expression by
doing something not allowing in patterns, like using a unary operator
or calling an identity function; those seem like unfortunate language
solutions, though.




Satisfying an expression pattern

A value satisfies an expression pattern if the match operation
succeeds.  I think it would be natural for this match operation to be
spelled the same way as that match-expression operator, so e.g. a
member function called ‘matches’ or a global binary operator called
‘~’ or whatever.

The lookup of this operation poses some interesting questions.  In
general, the operation itself is likely to be associated with the
intended type of the expression pattern, but that type will often
require refinement from the type of the matched value.

For example, consider a pattern like this:

case 0...10:





We should be able to use this pattern when switching on a value which
is not an Int, but if we type-check the expression on its own, we will
assign it the type Range<Int>, which will not necessarily permit us
to match (say) a UInt8.




Order of evaluation of patterns

I’d like to keep the order of evaluation and testing of expressions
within a pattern unspecified if I can; I imagine that there should be
a lot of cases where we can rule out a case using a cheap test instead
of a more expensive one, and it would suck to have to run the
expensive one just to have cleaner formal semantics.  Specifically,
I’m worried about cases like case [foo(), 0]:; if we can test
against 0 before calling foo(), that would be great.  Also, if
a name is bound and then used directly as an expression later on, it
would be nice to have some flexibility about which value is actually
copied into the variable, but this is less critical.

*-pattern ::= *-pattern-tuple
*-pattern-tuple ::= '(' *-pattern-tuple-element-list? '...'? ')'
*-pattern-tuple-element-list ::= *-pattern-tuple-element
*-pattern-tuple-element-list ::= *-pattern-tuple-element ',' pattern-tuple-element-list
*-pattern-tuple-element ::= *-pattern
*-pattern-tuple-element ::= identifier '=' *-pattern





Tuples are interesting because of the labelled / non-labelled
distinction. Especially with labelled elements, it is really nice to
be able to ignore all the elements you don’t care about. This grammar
permits some prefix or set of labels to be matched and the rest to be
ignored.






Miscellaneous

It would be interesting to allow overloading / customization of
pattern-matching. We may find ourselves needing to do something like this to
support non-fragile pattern matching anyway (if there’s some set of restrictions
that make it reasonable to permit that). The obvious idea of compiling into the
visitor pattern is a bit compelling, although control flow would be tricky —
we’d probably need the generated code to throw an exception. Alternatively, we
could let the non-fragile type convert itself into a fragile type for purposes
of pattern matching.

If we ever allow infix ADT constructors, we’ll need to allow them in patterns as
well.

Eventually, we will build regular expressions into the language, and we will
allow them directly as patterns and even bind grouping expressions into user
variables.

John.







          

      

      

    

  

    
      
          
            
  
Stored and Computed Variables


Warning

This document has not been updated since the initial design in
Swift 1.0.



Variables are declared using the var keyword. These declarations are valid
at the top level, within types, and within code bodies, and are respectively
known as global variables, member variables, and local variables.
Member variables are commonly referred to as properties.

Every variable declaration can be classified as either stored or computed.
Member variables inherited from a superclass obey slightly different rules.



	Stored Variables

	Computed Variables

	Observing Accessors

	Overriding Read-Only Variables

	Overriding Read-Write Variables






Stored Variables

The simplest form of a variable declaration provides only a type:

var count : Int





This form of var declares a stored variable. Stored variables cause
storage to be allocated in their containing context:


	a new global symbol for a global variable

	a slot in an object for a member variable

	space on the stack for a local variable



(Note that this storage may still be optimized away if determined unnecessary.)

Stored variables must be initialized before use. As such, an initial value can
be provided at the declaration site. This is mandatory for global variables,
since it cannot be proven who accesses the variable first.

var count : Int = 10





If the type of the variable can be inferred from the initial value expression,
it may be omitted in the declaration:

var count = 10





Variables formed during pattern matching are also considered stored
variables.

switch optVal {
case .Some(var actualVal):
  // do something
case .None:
  // do something else
}








Computed Variables

A computed variable behaves syntactically like a variable, but does not
actually require storage. Instead, accesses to the variable go through
“accessors” known as the getter and the setter. Thus, a computed variable
is declared as a variable with a custom getter:

struct Rect {
  // Stored member variables
  var x, y, width, height : Int

  // A computed member variable
  var maxX : Int {
    get {
      return x + width
    }
    set(newMax) {
      x = newMax - width
    }
  }

// myRect.maxX = 40





In this example, no storage is provided for maxX.

If the setter’s argument is omitted, it is assumed to be named value:

var maxY : Int {
  get {
    return y + height
  }
  set {
    y = value - height
  }
}





Finally, if a computed variable has a getter but no setter, it becomes a
read-only variable.  In this case the get label may be omitted.
Attempting to set a read-only variable is a compile-time error:

  var area : Int {
    return self.width * self.height
  }
}





Note that because this is a member variable, the implicit parameter self is
available for use within the accessors.

It is illegal for a variable to have a setter but no getter.




Observing Accessors

Occasionally it is useful to provide custom behavior when changing a variable’s
value that goes beyond simply modifying the underlying storage. One way to do
this is to pair a stored variable with a computed variable:

var _backgroundColor : Color
var backgroundColor : Color {
  get {
    return _backgroundColor
  }
  set {
    _backgroundColor = value
    refresh()
  }
}





However, this contains a fair amount of boilerplate. For cases where a stored
property provides the correct storage semantics, you can add custom behavior
before or after the underlying assignment using “observing accessors”
willSet and didSet:

var backgroundColor : Color {
  didSet {
    refresh()
  }
}

var currentURL : URL {
  willSet(newValue) {
    if newValue != currentURL {
      cancelCurrentRequest()
    }
  }
  didSet {
    sendNewRequest(currentURL)
  }
}





A stored property may have either observing accessor, or both. Like set,
the argument for willSet may be omitted, in which case it is provided as
“value”:

var accountName : String {
  willSet {
    assert(value != "root")
  }
}





Observing accessors provide the same behavior as the two-variable example, with
two important exceptions:


	A variable with observing accessors is still a stored variable, which means
it must still be initialized before use. Initialization does not run the
code in the observing accessors.

	All assignments to the variable will trigger the observing accessors with
the following exceptions: assignments in the init and destructor function for
the enclosing type, and those from within the accessors themselves.  In this
context, assignments directly store to the underlying storage.



Computed properties may not have observing accessors. That is, a property may
have a custom getter or observing accessors, but not both.




Overriding Read-Only Variables

If a member variable within a class is a read-only computed variable, it may
be overridden by subclasses. In this case, the subclass may choose to replace
that computed variable with a stored variable by declaring the stored variable
in the usual way:

class Base {
  var color : Color {
    return .Black
  }
}

class Colorful : Base {
  var color : Color
}

var object = Colorful(.Red)
object.color = .Blue





The new stored variable may have observing accessors:

class MemoryColorful : Base {
  var oldColors : Array<Color> = []

  var color : Color {
    willSet {
      oldColors.append(color)
    }
  }
}





A computed variable may also be overridden with another computed variable:

class MaybeColorful : Base {
  var color : Color {
    get {
      if randomBooleanValue() {
        return .Green
      } else {
        return super.color
      }
    }
    set {
      print("Sorry, we choose our own colors here.")
    }
  }
}








Overriding Read-Write Variables

If a member variable within a class as a read-write variable, it is not
generally possible to know if it is a computed variable or stored variable.
A subclass may override the superclass’s variable with a new computed variable:

class ColorBase {
  var color : Color {
    didSet {
      print("I've been painted \(color)!")
    }
  }
}

class BrightlyColored : ColorBase {
  var color : Color {
    get {
      return super.color
    }
    set(newColor) {
      // Prefer whichever color is brighter.
      if newColor.luminance > super.color.luminance {
        super.color = newColor
      } else {
        // Keep the old color.
      }
    }
  }
}





In this case, because the superclass’s didSet is part of the generated
setter, it is only called when the subclass actually invokes setter through
its superclass. On the else branch, the superclass’s didSet is skipped.

A subclass may also use observing accessors to add behavior to an inherited
member variable:

class TrackingColored : ColorBase {
  var prevColor : Color?

  var color : Color {
    willSet {
      prevColor = color
    }
  }
}





In this case, the willSet accessor in the subclass is called first, then
the setter for color in the superclass. Critically, this is not declaring
a new stored variable, and the subclass will not need to initialize color
as a separate member variable.

Because observing accessors add behavior to an inherited member variable, a
superclass’s variable may not be overridden with a new stored variable, even
if no observing accessors are specified. In the rare case where this is
desired, the two-variable pattern shown above can be used.
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Abstract

SIL is an SSA-form IR with high-level semantic information designed to implement
the Swift programming language. SIL accommodates the following use cases:


	A set of guaranteed high-level optimizations that provide a predictable
baseline for runtime and diagnostic behavior.

	Diagnostic dataflow analysis passes that enforce Swift language requirements,
such as definitive initialization of variables and constructors, code
reachability, switch coverage.

	High-level optimization passes, including retain/release optimization,
dynamic method devirtualization, closure inlining, memory allocation promotion,
and generic function instantiation.

	A stable distribution format that can be used to distribute “fragile”
inlineable or generic code with Swift library modules, to be optimized into
client binaries.



In contrast to LLVM IR, SIL is a generally target-independent format
representation that can be used for code distribution, but it can also express
target-specific concepts as well as LLVM can.




SIL in the Swift Compiler

At a high level, the Swift compiler follows a strict pipeline architecture:


	The Parse module constructs an AST from Swift source code.

	The Sema module type-checks the AST and annotates it with type information.

	The SILGen module generates raw SIL from an AST.

	A series of Guaranteed Optimization Passes and Diagnostic Passes are run
over the raw SIL both to perform optimizations and to emit
language-specific diagnostics.  These are always run, even at -Onone, and
produce canonical SIL.

	General SIL Optimization Passes optionally run over the canonical SIL to
improve performance of the resulting executable.  These are enabled and
controlled by the optimization level and are not run at -Onone.

	IRGen lowers canonical SIL to LLVM IR.

	The LLVM backend (optionally) applies LLVM optimizations, runs the LLVM code
generator and emits binary code.



The stages pertaining to SIL processing in particular are as follows:


SILGen

SILGen produces raw SIL by walking a type-checked Swift AST.
The form of SIL emitted by SILGen has the following properties:


	Variables are represented by loading and storing mutable memory locations
instead of being in strict SSA form. This is similar to the initial
alloca-heavy LLVM IR emitted by frontends such as Clang. However, Swift
represents variables as reference-counted “boxes” in the most general case,
which can be retained, released, and captured into closures.

	Dataflow requirements, such as definitive assignment, function returns,
switch coverage (TBD), etc. have not yet been enforced.

	transparent function optimization has not yet been honored.



These properties are addressed by subsequent guaranteed optimization and
diagnostic passes which are always run against the raw SIL.




Guaranteed Optimization and Diagnostic Passes

After SILGen, a deterministic sequence of optimization passes is run over the
raw SIL. We do not want the diagnostics produced by the compiler to change as
the compiler evolves, so these passes are intended to be simple and
predictable.


	Mandatory inlining inlines calls to “transparent” functions.

	Memory promotion is implemented as two optimization phases, the first
of which performs capture analysis to promote alloc_box instructions to
alloc_stack, and the second of which promotes non-address-exposed alloc_stack
instructions to SSA registers.

	Constant propagation folds constant expressions and propagates the constant values.
If an arithmetic overflow occurs during the constant expression computation, a diagnostic
is issued.

	Return analysis verifies that each function returns a value on every
code path and doesn’t “fall of the end” of its definition, which is an error.
It also issues an error when a noreturn function returns.

	Critical edge splitting splits all critical edges from terminators that
don’t support arbitrary basic block arguments (all non cond_branch
terminators).



If all diagnostic passes succeed, the final result is the
canonical SIL for the program.

TODO:


	Generic specialization

	Basic ARC optimization for acceptable performance at -Onone.






General Optimization Passes

SIL captures language-specific type information, making it possible to
perform high-level optimizations that are difficult to perform on LLVM
IR.


	Generic Specialization analyzes specialized calls to generic
functions and generates new specialized version of the
functions. Then it rewrites all specialized usages of the gener ic
to a direct call of the appropriate specialized function.

	Witness and VTable Devirtualization for a given type looks up
the associated method from a class’s vtable or a types witness table
and replaces the indirect virtual call with a call to the mapped
function.

	Performance Inlining

	Reference Counting Optimizations

	Memory Promotion/Optimizations

	High-level domain specific optimizations The swift compiler implements
high-level optimizations on basic Swift containers such as Array or String.
Domain specific optimizations require a defined interface between
the standard library and the optimizer. More details can be found here:
High-Level Optimizations in SIL








Syntax

SIL is reliant on Swift’s type system and declarations, so SIL syntax
is an extension of Swift’s. A .sil file is a Swift source file
with added SIL definitions. The Swift source is parsed only for its
declarations; Swift func bodies (except for nested declarations)
and top-level code are ignored by the SIL parser. In a .sil file,
there are no implicit imports; the swift and/or Builtin
standard modules must be imported explicitly if used.

Here is an example of a .sil file:

sil_stage canonical

import Swift

// Define types used by the SIL function.

struct Point {
  var x : Double
  var y : Double
}

class Button {
  func onClick()
  func onMouseDown()
  func onMouseUp()
}

// Declare a Swift function. The body is ignored by SIL.
func taxicabNorm(a:Point) -> Double {
  return a.x + a.y
}

// Define a SIL function.
// The name @_T5norms11taxicabNormfT1aV5norms5Point_Sd is the mangled name
// of the taxicabNorm Swift function.
sil @_T5norms11taxicabNormfT1aV5norms5Point_Sd : $(Point) -> Double {
bb0(%0 : $Point):
  // func Swift.+(Double, Double) -> Double
  %1 = function_ref @_Tsoi1pfTSdSd_Sd
  %2 = struct_extract %0 : $Point, #Point.x
  %3 = struct_extract %0 : $Point, #Point.y
  %4 = apply %1(%2, %3) : $(Double, Double) -> Double
  %5 = return %4 : Double
}

// Define a SIL vtable. This matches dynamically-dispatched method
// identifiers to their implementations for a known static class type.
sil_vtable Button {
  #Button.onClick!1: @_TC5norms6Button7onClickfS0_FT_T_
  #Button.onMouseDown!1: @_TC5norms6Button11onMouseDownfS0_FT_T_
  #Button.onMouseUp!1: @_TC5norms6Button9onMouseUpfS0_FT_T_
}






SIL Stage

decl ::= sil-stage-decl
sil-stage-decl ::= 'sil_stage' sil-stage

sil-stage ::= 'raw'
sil-stage ::= 'canonical'





There are different invariants on SIL depending on what stage of processing
has been applied to it.


	Raw SIL is the form produced by SILGen that has not been run through
guaranteed optimizations or diagnostic passes. Raw SIL may not have a
fully-constructed SSA graph. It may contain dataflow errors. Some instructions
may be represented in non-canonical forms, such as assign and
destroy_addr for non-address-only values. Raw SIL should not be used
for native code generation or distribution.

	Canonical SIL is SIL as it exists after guaranteed optimizations and
diagnostics. Dataflow errors must be eliminated, and certain instructions
must be canonicalized to simpler forms. Performance optimization and native
code generation are derived from this form, and a module can be distributed
containing SIL in this (or later) forms.



SIL files declare the processing stage of the included SIL with one of the
declarations sil_stage raw or sil_stage canonical at top level. Only
one such declaration may appear in a file.




SIL Types

sil-type ::= '$' '*'? generic-parameter-list? type





SIL types are introduced with the $ sigil. SIL’s type system is
closely related to Swift’s, and so the type after the $ is parsed
largely according to Swift’s type grammar.


Type Lowering

A formal type is the type of a value in Swift, such as an expression
result.  Swift’s formal type system intentionally abstracts over a
large number of representational issues like ownership transfer
conventions and directness of arguments.  However, SIL aims to
represent most such implementation details, and so these differences
deserve to be reflected in the SIL type system.  Type lowering is
the process of turning a formal type into its lowered type.

It is important to be aware that the lowered type of a declaration
need not be the lowered type of the formal type of that declaration.
For example, the lowered type of a declaration reference:


	will usually be thin,

	will frequently be uncurried,

	may have a non-Swift calling convention,

	may use bridged types in its interface, and

	may use ownership conventions that differ from Swift’s default
conventions.






Abstraction Difference

Generic functions working with values of unconstrained type must
generally work with them indirectly, e.g. by allocating sufficient
memory for them and then passing around pointers to that memory.
Consider a generic function like this:

func generateArray<T>(n : Int, generator : () -> T) -> T[]





The function generator will be expected to store its result
indirectly into an address passed in an implicit parameter.  There’s
really just no reasonable alternative when working with a value of
arbitrary type:


	We don’t want to generate a different copy of generateArray for
every type T.

	We don’t want to give every type in the language a common
representation.

	We don’t want to dynamically construct a call to generator
depending on the type T.



But we also don’t want the existence of the generic system to force
inefficiencies on non-generic code.  For example, we’d like a function
of type () -> Int to be able to return its result directly; and
yet, () -> Int is a valid substitution of () -> T, and a
caller of generateArray<Int> should be able to pass an arbitrary
() -> Int in as the generator.

Therefore, the representation of a formal type in a generic context
may differ from the representation of a substitution of that formal type.
We call such differences abstraction differences.

SIL’s type system is designed to make abstraction differences always
result in differences between SIL types.  The goal is that a properly-
abstracted value should be correctly usable at any level of substitution.

In order to achieve this, the formal type of a generic entity should
always be lowered using the abstraction pattern of its unsubstituted
formal type.  For example, consider the following generic type:

struct Generator<T> {
  var fn : () -> T
}
var intGen : Generator<Int>





intGen.fn has the substituted formal type () -> Int, which
would normally lower to the type @callee_owned () -> Int, i.e.
returning its result directly.  But if that type is properly lowered
with the pattern of its unsubstituted type () -> T, it becomes
@callee_owned (@out Int) -> ().

When a type is lowered using the abstraction pattern of an
unrestricted type, it is lowered as if the pattern were replaced with
a type sharing the same structure but replacing all materializable
types with fresh type variables.

For example, if g has type Generator<(Int,Int) -> Float>, g.fn is
lowered using the pattern () -> T, which eventually causes (Int,Int)
-> Float to be lowered using the pattern T, which is the same as
lowering it with the pattern U -> V; the result is that g.fn
has the following lowered type:

@callee_owned () -> @owned @callee_owned (@out Float, @in (Int,Int)) -> ()``.





As another example, suppose that h has type
Generator<(Int, @inout Int) -> Float>.  Neither (Int, @inout Int)
nor @inout Int are potential results of substitution because they
aren’t materializable, so h.fn has the following lowered type:

@callee_owned () -> @owned @callee_owned (@out Float, @in Int, @inout Int)





This system has the property that abstraction patterns are preserved
through repeated substitutions.  That is, you can consider a lowered
type to encode an abstraction pattern; lowering T by R is
equivalent to lowering T by (S lowered by R).

SILGen has procedures for converting values between abstraction
patterns.

At present, only function and tuple types are changed by abstraction
differences.




Legal SIL Types

The type of a value in SIL shall be:


	a loadable legal SIL type, $T,

	the address of a legal SIL type, $*T, or

	the address of local storage of a legal SIL type, $*@local_storage T.



A type T is a legal SIL type if:


	it is a function type which satisfies the constraints (below) on
function types in SIL,

	it is a tuple type whose element types are legal SIL types,

	it is a legal Swift type that is not a function, tuple, or l-value type, or

	it is a @box containing a legal SIL type.



Note that types in other recursive positions in the type grammar are
still formal types.  For example, the instance type of a metatype or
the type arguments of a generic type are still formal Swift types, not
lowered SIL types.




Address Types

The address of T $*T is a pointer to memory containing a value
of any reference or value type $T.  This can be an internal
pointer into a data structure. Addresses of loadable types can be
loaded and stored to access values of those types.

Addresses of address-only types (see below) can only be used with
instructions that manipulate their operands indirectly by address, such
as copy_addr or destroy_addr, or as arguments to functions.
It is illegal to have a value of type $T if T is address-only.

Addresses are not reference-counted pointers like class values are. They
cannot be retained or released.

Address types are not first-class: they cannot appear in recursive
positions in type expressions.  For example, the type $**T is not
a legal type.

The address of an address cannot be directly taken. $**T is not a representable
type. Values of address type thus cannot be allocated, loaded, or stored
(though addresses can of course be loaded from and stored to).

Addresses can be passed as arguments to functions if the corresponding
parameter is indirect.  They cannot be returned.




Local Storage Types

The address of local storage for T $*@local_storage T is a
handle to a stack allocation of a variable of type $T.

For many types, the handle for a stack allocation is simply the
allocated address itself.  However, if a type is runtime-sized, the
compiler must emit code to potentially dynamically allocate memory.
SIL abstracts over such differences by using values of local-storage
type as the first result of alloc_stack and the operand of
dealloc_stack.

Local-storage address types are not first-class in the same sense
that address types are not first-class.




Box Types

Captured local variables and the payloads of indirect value types are stored
on the heap. The type @box T is a reference-counted type that references
a box containing a mutable value of type T. Boxes always use Swift-native
reference counting, so they can be queried for uniqueness and cast to the
Builtin.NativeObject type.




Function Types

Function types in SIL are different from function types in Swift in a
number of ways:


	A SIL function type may be generic.  For example, accessing a
generic function with function_ref will give a value of
generic function type.



	A SIL function type declares its conventional treatment of its
context value:


	If it is @thin, the function requires no context value.

	If it is @callee_owned, the context value is treated as an
owned direct parameter.

	If it is @callee_guaranteed, the context value is treated as
a guaranteed direct parameter.

	Otherwise, the context value is treated as an unowned direct
parameter.





	A SIL function type declares the conventions for its parameters,
including any implicit out-parameters.  The parameters are written
as an unlabelled tuple; the elements of that tuple must be legal SIL
types, optionally decorated with one of the following convention
attributes.

The value of an indirect parameter has type *T; the value of a
direct parameter has type T.


	An @in parameter is indirect.  The address must be of an
initialized object; the function is responsible for destroying
the value held there.

	An @inout parameter is indirect.  The address must be of an
initialized object, and the function must leave an initialized
object there upon exit.

	An @out parameter is indirect.  The address must be of an
uninitialized object; the function is responsible for initializing
a value there.  If there is an @out parameter, it must be
the first parameter, and the direct result must be ().

	An @owned parameter is an owned direct parameter.

	A @guaranteed parameter is a guaranteed direct parameter.

	An @in_guaranteed parameter is indirect.  The address must be of an
initialized object; both the caller and callee promise not to mutate the
pointee, allowing the callee to read it.

	Otherwise, the parameter is an unowned direct parameter.





	A SIL function type declares the convention for its direct result.
The result must be a legal SIL type.


	An @owned result is an owned direct result.

	An @autoreleased result is an autoreleased direct result.

	Otherwise, the parameter is an unowned direct result.







A direct parameter or result of trivial type must always be unowned.

An owned direct parameter or result is transferred to the recipient,
which becomes responsible for destroying the value. This means that
the value is passed at +1.

An unowned direct parameter or result is instantaneously valid at the
point of transfer.  The recipient does not need to worry about race
conditions immediately destroying the value, but should copy it
(e.g. by strong_retaining an object pointer) if the value will be
needed sooner rather than later.

A guaranteed direct parameter is like an unowned direct parameter
value, except that it is guaranteed by the caller to remain valid
throughout the execution of the call. This means that any
strong_retain, strong_release pairs in the callee on the
argument can be eliminated.

An autoreleased direct result must have a type with a retainable
pointer representation.  It may have been autoreleased, and the caller
should take action to reclaim that autorelease with
strong_retain_autoreleased.


	The @noescape declaration attribute on Swift parameters (which is valid only
on parameters of function type, and is implied by the @autoclosure attribute)
is turned into a @noescape type attribute on SIL arguments.  @noescape
indicates that the lifetime of the closure parameter will not be extended by
the callee (e.g. the pointer will not be stored in a global variable).  It
corresponds to the LLVM “nocapture” attribute in terms of semantics (but is
limited to only work with parameters of function type in Swift).



	SIL function types may provide an optional error result, written by
placing @error on a result.  An error result is always
implicitly @owned.  Only functions with a native calling
convention may have an error result.

A function with an error result cannot be called with apply.
It must be called with try_apply.
There is one exception to this rule: a function with an error result can be
called with apply [nothrow] if the compiler can prove that the function
does not actually throw.

return produces a normal result of the function.  To return
an error result, use throw.

Type lowering lowers the throws annotation on formal function
types into more concrete error propagation:


	For native Swift functions, throws is turned into an error
result.

	For non-native Swift functions, throws is turned in an
explicit error-handling mechanism based on the imported API.  The
importer only imports non-native methods and types as throws
when it is possible to do this automatically.










Properties of Types

SIL classifies types into additional subgroups based on ABI stability and
generic constraints:


	Loadable types are types with a fully exposed concrete representation:


	Reference types

	Builtin value types

	Fragile struct types in which all element types are loadable

	Tuple types in which all element types are loadable

	Class protocol types

	Archetypes constrained by a class protocol



A loadable aggregate type is a tuple or struct type that is loadable.

A trivial type is a loadable type with trivial value semantics.
Values of trivial type can be loaded and stored without any retain or
release operations and do not need to be destroyed.



	Runtime-sized types are restricted value types for which the compiler
does not know the size of the type statically:


	Resilient value types

	Fragile struct or tuple types that contain resilient types as elements at
any depth

	Archetypes not constrained by a class protocol





	Address-only types are restricted value types which cannot be
loaded or otherwise worked with as SSA values:


	Runtime-sized types

	Non-class protocol types

	@weak types



Values of address-only type (“address-only values”) must reside in
memory and can only be referenced in SIL by address. Addresses of
address-only values cannot be loaded from or stored to. SIL provides
special instructions for indirectly manipulating address-only
values, such as copy_addr and destroy_addr.





Some additional meaningful categories of type:


	A heap object reference type is a type whose representation consists of a
single strong-reference-counted pointer. This includes all class types,
the Builtin.ObjectPointer and Builtin.ObjCPointer types, and
archetypes that conform to one or more class protocols.

	A reference type is more general in that its low-level representation may
include additional global pointers alongside a strong-reference-counted
pointer. This includes all heap object reference types and adds
thick function types and protocol/protocol composition types that conform to
one or more class protocols. All reference types can be retain-ed and
release-d. Reference types also have ownership semantics for their
referenced heap object; see Reference Counting below.

	A type with retainable pointer representation is guaranteed to
be compatible (in the C sense) with the Objective-C id type.
The value at runtime may be nil.  This includes classes,
class metatypes, block functions, and class-bounded existentials with
only Objective-C-compatible protocol constraints, as well as one
level of Optional or ImplicitlyUnwrappedOptional applied to any of the
above.  Types with retainable pointer representation can be returned
via the @autoreleased return convention.



SILGen does not always map Swift function types one-to-one to SIL function
types. Function types are transformed in order to encode additional attributes:


	The convention of the function, indicated by the


@convention(convention)


attribute. This is similar to the language-level @convention
attribute, though SIL extends the set of supported conventions with
additional distinctions not exposed at the language level:


	@convention(thin) indicates a “thin” function reference, which uses
the Swift calling convention with no special “self” or “context” parameters.

	@convention(thick) indicates a “thick” function reference, which
uses the Swift calling convention and carries a reference-counted context
object used to represent captures or other state required by the function.

	@convention(block) indicates an Objective-C compatible block reference.
The function value is represented as a reference to the block object,
which is an id-compatible Objective-C object that embeds its invocation
function within the object. The invocation function uses the C calling
convention.

	@convention(c) indicates a C function reference. The function value
carries no context and uses the C calling convention.

	@convention(objc_method) indicates an Objective-C method implementation.
The function uses the C calling convention, with the SIL-level self
parameter (by SIL convention mapped to the final formal parameter)
mapped to the self and _cmd arguments of the implementation.

	@convention(method) indicates a Swift instance method implementation.
The function uses the Swift calling convention, using the special self
parameter.

	@convention(witness_method) indicates a Swift protocol method
implementation. The function’s polymorphic convention is emitted in such
a way as to guarantee that it is polymorphic across all possible
implementors of the protocol.





	The fully uncurried representation of the function type, with
all of the curried argument clauses flattened into a single argument
clause. For instance, a curried function func foo(x:A)(y:B) -> C
might be emitted as a function of type ((y:B), (x:A)) -> C.  The
exact representation depends on the function’s calling
convention, which determines the exact ordering of currying
clauses.  Methods are treated as a form of curried function.








Layout Compatible Types

(This section applies only to Swift 1.0 and will hopefully be obviated in
future releases.)

SIL tries to be ignorant of the details of type layout, and low-level
bit-banging operations such as pointer casts are generally undefined. However,
as a concession to implementation convenience, some types are allowed to be
considered layout compatible. Type T is layout compatible with type
U iff:


	an address of type $*U can be cast by
address_to_pointer/pointer_to_address to $*T and a valid value
of type T can be loaded out (or indirectly used, if T is address-
only),

	if T is a nontrivial type, then retain_value/release_value of
the loaded T value is equivalent to retain_value/release_value of
the original U value.



This is not always a commutative relationship; T can be layout-compatible
with U whereas U is not layout-compatible with T. If the layout
compatible relationship does extend both ways, T and U are
commutatively layout compatible. It is however always transitive; if T
is layout-compatible with U and U is layout-compatible with V, then
T is layout-compatible with V. All types are layout-compatible with
themselves.

The following types are considered layout-compatible:


	Builtin.RawPointer is commutatively layout compatible with all heap
object reference types, and Optional of heap object reference types.
(Note that RawPointer is a trivial type, so does not have ownership
semantics.)

	Builtin.RawPointer is commutatively layout compatible with
Builtin.Word.

	Structs containing a single stored property are commutatively layout
compatible with the type of that property.

	A heap object reference is commutatively layout compatible with any type
that can correctly reference the heap object. For instance, given a class
B and a derived class D inheriting from B, a value of
type B referencing an instance of type D is layout compatible with
both B and D, as well as Builtin.NativeObject and
Builtin.UnknownObject. It is not layout compatible with an unrelated class
type E.

	For payloaded enums, the payload type of the first payloaded case is
layout-compatible with the enum (not commutatively).








Values and Operands

sil-identifier ::= [A-Za-z_0-9]+
sil-value-name ::= '%' sil-identifier
sil-value ::= sil-value-name ('#' [0-9]+)?
sil-value ::= 'undef'
sil-operand ::= sil-value ':' sil-type





SIL values are introduced with the % sigil and named by an
alphanumeric identifier, which references the instruction or basic block
argument that produces the value.  SIL values may also refer to the keyword
‘undef’, which is a value of undefined contents.
In SIL, a single instruction may produce multiple values. Operands that refer
to multiple-value instructions choose the value by following the %name with
# and the index of the value. For example:

// alloc_box produces two values--the refcounted pointer %box#0, and the
// value address %box#1
%box = alloc_box $Int64
// Refer to the refcounted pointer
strong_retain %box#0 : $@box Int64
// Refer to the address
store %value to %box#1 : $*Int64





Unlike LLVM IR, SIL instructions that take value operands only accept
value operands. References to literal constants, functions, global variables, or
other entities require specialized instructions such as integer_literal,
function_ref, global_addr, etc.




Functions

decl ::= sil-function
sil-function ::= 'sil' sil-linkage? sil-function-name ':' sil-type
                   '{' sil-basic-block+ '}'
sil-function-name ::= '@' [A-Za-z_0-9]+





SIL functions are defined with the sil keyword. SIL function names
are introduced with the @ sigil and named by an alphanumeric
identifier. This name will become the LLVM IR name for the function,
and is usually the mangled name of the originating Swift declaration.
The sil syntax declares the function’s name and SIL type, and
defines the body of the function inside braces. The declared type must
be a function type, which may be generic.




Basic Blocks

sil-basic-block ::= sil-label sil-instruction-def* sil-terminator
sil-label ::= sil-identifier ('(' sil-argument (',' sil-argument)* ')')? ':'
sil-argument ::= sil-value-name ':' sil-type

sil-instruction-def ::= (sil-value-name '=')? sil-instruction





A function body consists of one or more basic blocks that correspond
to the nodes of the function’s control flow graph. Each basic block
contains one or more instructions and ends with a terminator
instruction. The function’s entry point is always the first basic
block in its body.

In SIL, basic blocks take arguments, which are used as an alternative to LLVM’s
phi nodes. Basic block arguments are bound by the branch from the predecessor
block:

sil @iif : $(Builtin.Int1, Builtin.Int64, Builtin.Int64) -> Builtin.Int64 {
bb0(%cond : $Builtin.Int1, %ifTrue : $Builtin.Int64, %ifFalse : $Builtin.Int64):
  cond_br %cond : $Builtin.Int1, then, else
then:
  br finish(%ifTrue : $Builtin.Int64)
else:
  br finish(%ifFalse : $Builtin.Int64)
finish(%result : $Builtin.Int64):
  return %result : $Builtin.Int64
}





Arguments to the entry point basic block, which has no predecessor,
are bound by the function’s caller:

sil @foo : $(Int) -> Int {
bb0(%x : $Int):
  %1 = return %x : $Int
}

sil @bar : $(Int, Int) -> () {
bb0(%x : $Int, %y : $Int):
  %foo = function_ref @foo
  %1 = apply %foo(%x) : $(Int) -> Int
  %2 = apply %foo(%y) : $(Int) -> Int
  %3 = tuple ()
  %4 = return %3 : $()
}








Declaration References

sil-decl-ref ::= '#' sil-identifier ('.' sil-identifier)* sil-decl-subref?
sil-decl-subref ::= '!' sil-decl-subref-part ('.' sil-decl-uncurry-level)? ('.' sil-decl-lang)?
sil-decl-subref ::= '!' sil-decl-uncurry-level ('.' sil-decl-lang)?
sil-decl-subref ::= '!' sil-decl-lang
sil-decl-subref-part ::= 'getter'
sil-decl-subref-part ::= 'setter'
sil-decl-subref-part ::= 'allocator'
sil-decl-subref-part ::= 'initializer'
sil-decl-subref-part ::= 'enumelt'
sil-decl-subref-part ::= 'destroyer'
sil-decl-subref-part ::= 'deallocator'
sil-decl-subref-part ::= 'globalaccessor'
sil-decl-subref-part ::= 'ivardestroyer'
sil-decl-subref-part ::= 'ivarinitializer'
sil-decl-subref-part ::= 'defaultarg' '.' [0-9]+
sil-decl-uncurry-level ::= [0-9]+
sil-decl-lang ::= 'foreign'





Some SIL instructions need to reference Swift declarations directly. These
references are introduced with the # sigil followed by the fully qualified
name of the Swift declaration. Some Swift declarations are
decomposed into multiple entities at the SIL level. These are distinguished by
following the qualified name with ! and one or more .-separated component
entity discriminators:


	getter: the getter function for a var declaration

	setter:  the setter function for a var declaration

	allocator: a struct or enum constructor, or a class‘s allocating constructor

	initializer: a class‘s initializing constructor

	enumelt: a member of a enum type.

	destroyer: a class’s destroying destructor

	deallocator: a class’s deallocating destructor

	globalaccessor: the addressor function for a global variable

	ivardestroyer: a class’s ivar destroyer

	ivarinitializer: a class’s ivar initializer

	defaultarg.n: the default argument-generating function for
the n-th argument of a Swift func

	foreign: a specific entry point for C/objective-C interoperability



Methods and curried function definitions in Swift also have multiple
“uncurry levels” in SIL, representing the function at each possible
partial application level. For a curried function declaration:

// Module example
func foo(x:A)(y:B)(z:C) -> D





The declaration references and types for the different uncurry levels are as
follows:

#example.foo!0 : $@thin (x:A) -> (y:B) -> (z:C) -> D
#example.foo!1 : $@thin ((y:B), (x:A)) -> (z:C) -> D
#example.foo!2 : $@thin ((z:C), (y:B), (x:A)) -> D





The deepest uncurry level is referred to as the natural uncurry level. In
this specific example, the reference at the natural uncurry level is
#example.foo!2.  Note that the uncurried argument clauses are composed
right-to-left, as specified in the calling convention. For uncurry levels
less than the uncurry level, the entry point itself is @thin but returns a
thick function value carrying the partially applied arguments for its context.

Dynamic dispatch instructions such as class method require their method
declaration reference to be uncurried to at least uncurry level 1 (which applies
both the “self” argument and the method arguments), because uncurry level zero
represents the application of the method to its “self” argument, as in
foo.method, which is where the dynamic dispatch semantically occurs
in Swift.




Linkage

sil-linkage ::= 'public'
sil-linkage ::= 'hidden'
sil-linkage ::= 'shared'
sil-linkage ::= 'private'
sil-linkage ::= 'public_external'
sil-linkage ::= 'hidden_external'





A linkage specifier controls the situations in which two objects in
different SIL modules are linked, i.e. treated as the same object.

A linkage is external if it ends with the suffix external.  An
object must be a definition if its linkage is not external.

All functions, global variables, and witness tables have linkage.
The default linkage of a definition is public.  The default linkage of a
declaration is public_external.  (These may eventually change to hidden
and hidden_external, respectively.)

On a global variable, an external linkage is what indicates that the
variable is not a definition.  A variable lacking an explicit linkage
specifier is presumed a definition (and thus gets the default linkage
for definitions, public.)


Definition of the linked relation

Two objects are linked if they have the same name and are mutually
visible:



	An object with public or public_external linkage is always
visible.

	An object with hidden, hidden_external, or shared
linkage is visible only to objects in the same Swift module.

	An object with private linkage is visible only to objects in
the same SIL module.






Note that the linked relationship is an equivalence relation: it is
reflexive, symmetric, and transitive.




Requirements on linked objects

If two objects are linked, they must have the same type.

If two objects are linked, they must have the same linkage, except:



	A public object may be linked to a public_external object.

	A hidden object may be linked to a hidden_external object.






If two objects are linked, at most one may be a definition, unless:



	both objects have shared linkage or

	at least one of the objects has an external linkage.






If two objects are linked, and both are definitions, then the
definitions must be semantically equivalent.  This equivalence may
exist only on the level of user-visible semantics of well-defined
code; it should not be taken to guarantee that the linked definitions
are exactly operationally equivalent.  For example, one definition of
a function might copy a value out of an address parameter, while
another may have had an analysis applied to prove that said value is
not needed.

If an object has any uses, then it must be linked to a definition
with non-external linkage.




Summary



	public definitions are unique and visible everywhere in the
program.  In LLVM IR, they will be emitted with external
linkage and default visibility.

	hidden definitions are unique and visible only within the
current Swift module.  In LLVM IR, they will be emitted with
external linkage and hidden visibility.

	private definitions are unique and visible only within the
current SIL module.  In LLVM IR, they will be emitted with
private linkage.

	shared definitions are visible only within the current Swift
module.  They can be linked only with other shared
definitions, which must be equivalent; therefore, they only need
to be emitted if actually used.  In LLVM IR, they will be emitted
with linkonce_odr linkage and hidden visibility.

	public_external and hidden_external objects always have
visible definitions somewhere else.  If this object nonetheless
has a definition, it’s only for the benefit of optimization or
analysis.  In LLVM IR, declarations will have external linkage
and definitions (if actually emitted as definitions) will have
available_externally linkage.











VTables

decl ::= sil-vtable
sil-vtable ::= 'sil_vtable' identifier '{' sil-vtable-entry* '}'

sil-vtable-entry ::= sil-decl-ref ':' sil-function-name





SIL represents dynamic dispatch for class methods using the class_method,
super_method, and dynamic_method instructions. The potential destinations
for these dispatch operations are tracked in sil_vtable declarations for
every class type. The declaration contains a mapping from every method of the
class (including those inherited from its base class) to the SIL function that
implements the method for that class:

class A {
  func foo()
  func bar()
  func bas()
}

sil @A_foo : $@thin (@owned A) -> ()
sil @A_bar : $@thin (@owned A) -> ()
sil @A_bas : $@thin (@owned A) -> ()

sil_vtable A {
  #A.foo!1: @A_foo
  #A.bar!1: @A_bar
  #A.bas!1: @A_bas
}

class B : A {
  func bar()
}

sil @B_bar : $@thin (@owned B) -> ()

sil_vtable B {
  #A.foo!1: @A_foo
  #A.bar!1: @B_bar
  #A.bas!1: @A_bas
}

class C : B {
  func bas()
}

sil @C_bas : $@thin (@owned C) -> ()

sil_vtable C {
  #A.foo!1: @A_foo
  #A.bar!1: @B_bar
  #A.bas!1: @C_bas
}





Note that the declaration reference in the vtable is to the least-derived method
visible through that class (in the example above, B‘s vtable references
A.bar and not B.bar, and C‘s vtable references A.bas and not
C.bas). The Swift AST maintains override relationships between declarations
that can be used to look up overridden methods in the SIL vtable for a derived
class (such as C.bas in C‘s vtable).




Witness Tables

decl ::= sil-witness-table
sil-witness-table ::= 'sil_witness_table' sil-linkage?
                      normal-protocol-conformance '{' sil-witness-entry* '}'





SIL encodes the information needed for dynamic dispatch of generic types into
witness tables. This information is used to produce runtime dispatch tables when
generating binary code. It can also be used by SIL optimizations to specialize
generic functions. A witness table is emitted for every declared explicit
conformance. Generic types share one generic witness table for all of their
instances. Derived classes inherit the witness tables of their base class.

protocol-conformance ::= normal-protocol-conformance
protocol-conformance ::= 'inherit' '(' protocol-conformance ')'
protocol-conformance ::= 'specialize' '<' substitution* '>'
                         '(' protocol-conformance ')'
protocol-conformance ::= 'dependent'
normal-protocol-conformance ::= identifier ':' identifier 'module' identifier





Witness tables are keyed by protocol conformance, which is a unique identifier
for a concrete type’s conformance to a protocol.


	A normal protocol conformance
names a (potentially unbound generic) type, the protocol it conforms to, and
the module in which the type or extension declaration that provides the
conformance appears. These correspond 1:1 to protocol conformance declarations
in the source code.

	If a derived class conforms to a protocol through inheritance from its base
class, this is represented by an inherited protocol conformance, which
simply references the protocol conformance for the base class.

	If an instance of a generic type conforms to a protocol, it does so with a
specialized conformance, which provides the generic parameter bindings
to the normal conformance, which should be for a generic type.



Witness tables are only directly associated with normal conformances.
Inherited and specialized conformances indirectly reference the witness table of
the underlying normal conformance.

sil-witness-entry ::= 'base_protocol' identifier ':' protocol-conformance
sil-witness-entry ::= 'method' sil-decl-ref ':' sil-function-name
sil-witness-entry ::= 'associated_type' identifier
sil-witness-entry ::= 'associated_type_protocol'
                      '(' identifier ':' identifier ')' ':' protocol-conformance





Witness tables consist of the following entries:


	Base protocol entries provide references to the protocol conformances that
satisfy the witnessed protocols’ inherited protocols.

	Method entries map a method requirement of the protocol to a SIL function
that implements that method for the witness type. One method entry must exist
for every required method of the witnessed protocol.

	Associated type entries map an associated type requirement of the protocol
to the type that satisfies that requirement for the witness type. Note that
the witness type is a source-level Swift type and not a SIL type. One
associated type entry must exist for every required associated type of the
witnessed protocol.

	Associated type protocol entries map a protocol requirement on an associated
type to the protocol conformance that satisfies that requirement for the
associated type.






Global Variables

decl ::= sil-global-variable
sil-global-variable ::= 'sil_global' sil-linkage identifier ':' sil-type





SIL representation of a global variable.

FIXME: to be written.






Dataflow Errors

Dataflow errors may exist in raw SIL. Swift’s semantics defines these
conditions as errors, so they must be diagnosed by diagnostic
passes and must not exist in canonical SIL.


Definitive Initialization

Swift requires that all local variables be initialized before use. In
constructors, all instance variables of a struct, enum, or class type must
be initialized before the object is used and before the constructor is returned
from.




Unreachable Control Flow

The unreachable terminator is emitted in raw SIL to mark incorrect control
flow, such as a non-Void function failing to return a value, or a
switch statement failing to cover all possible values of its subject.
The guaranteed dead code elimination pass can eliminate truly unreachable
basic blocks, or unreachable instructions may be dominated by applications
of @noreturn functions. An unreachable instruction that survives
guaranteed DCE and is not immediately preceded by a @noreturn
application is a dataflow error.






Runtime Failure

Some operations, such as failed unconditional checked conversions or the
Builtin.trap compiler builtin, cause a runtime failure, which
unconditionally terminates the current actor. If it can be proven that a
runtime failure will occur or did occur, runtime failures may be reordered so
long as they remain well-ordered relative to operations external to the actor
or the program as a whole. For instance, with overflow checking on integer
arithmetic enabled, a simple for loop that reads inputs in from one or more
arrays and writes outputs to another array, all local
to the current actor, may cause runtime failure in the update operations:

// Given unknown start and end values, this loop may overflow
for var i = unknownStartValue; i != unknownEndValue; ++i {
  ...
}





It is permitted to hoist the overflow check and associated runtime failure out
of the loop itself and check the bounds of the loop prior to entering it, so
long as the loop body has no observable effect outside of the current actor.




Undefined Behavior

Incorrect use of some operations is undefined behavior, such as invalid
unchecked casts involving Builtin.RawPointer types, or use of compiler
builtins that lower to LLVM instructions with undefined behavior at the LLVM
level. A SIL program with undefined behavior is meaningless, much like undefined
behavior in C, and has no predictable semantics. Undefined behavior should not
be triggered by valid SIL emitted by a correct Swift program using a correct
standard library, but cannot in all cases be diagnosed or verified at the SIL
level.




Calling Convention

This section describes how Swift functions are emitted in SIL.


Swift Calling Convention @cc(swift)

The Swift calling convention is the one used by default for native Swift
functions.

Tuples in the input type of the function are recursively destructured into
separate arguments, both in the entry point basic block of the callee, and
in the apply instructions used by callers:

func foo(x:Int, y:Int)

sil @foo : $(x:Int, y:Int) -> () {
entry(%x : $Int, %y : $Int):
  ...
}

func bar(x:Int, y:(Int, Int))

sil @bar : $(x:Int, y:(Int, Int)) -> () {
entry(%x : $Int, %y0 : $Int, %y1 : $Int):
  ...
}

func call_foo_and_bar() {
  foo(1, 2)
  bar(4, (5, 6))
}

sil @call_foo_and_bar : $() -> () {
entry:
  ...
  %foo = function_ref @foo : $(x:Int, y:Int) -> ()
  %foo_result = apply %foo(%1, %2) : $(x:Int, y:Int) -> ()
  ...
  %bar = function_ref @bar : $(x:Int, y:(Int, Int)) -> ()
  %bar_result = apply %bar(%4, %5, %6) : $(x:Int, y:(Int, Int)) -> ()
}





Calling a function with trivial value types as inputs and outputs
simply passes the arguments by value. This Swift function:

func foo(x:Int, y:Float) -> UnicodeScalar

foo(x, y)





gets called in SIL as:

%foo = constant_ref $(Int, Float) -> UnicodeScalar, @foo
%z = apply %foo(%x, %y) : $(Int, Float) -> UnicodeScalar






Reference Counts

NOTE This section only is speaking in terms of rules of thumb. The
actual behavior of arguments with respect to arguments is defined by
the argument’s convention attribute (e.g. @owned), not the
calling convention itself.

Reference type arguments are passed in at +1 retain count and consumed
by the callee. A reference type return value is returned at +1 and
consumed by the caller. Value types with reference type components
have their reference type components each retained and released the
same way. This Swift function:

class A {}

func bar(x:A) -> (Int, A) { ... }

bar(x)





gets called in SIL as:

%bar = function_ref @bar : $(A) -> (Int, A)
strong_retain %x : $A
%z = apply %bar(%x) : $(A) -> (Int, A)
// ... use %z ...
%z_1 = tuple_extract %z : $(Int, A), 1
strong_release %z_1





When applying a thick function value as a callee, the function value is also
consumed at +1 retain count.




Address-Only Types

For address-only arguments, the caller allocates a copy and passes the address
of the copy to the callee. The callee takes ownership of the copy and is
responsible for destroying or consuming the value, though the caller must still
deallocate the memory. For address-only return values, the
caller allocates an uninitialized buffer and passes its address as the first
argument to the callee. The callee must initialize this buffer before
returning. This Swift function:

 @API struct A {}

func bas(x:A, y:Int) -> A { return x }

var z = bas(x, y)
// ... use z ...





gets called in SIL as:

%bas = function_ref @bas : $(A, Int) -> A
%z = alloc_stack $A
%x_arg = alloc_stack $A
copy_addr %x to [initialize] %x_arg : $*A
apply %bas(%z, %x_arg, %y) : $(A, Int) -> A
dealloc_stack %x_arg : $*A // callee consumes %x.arg, caller deallocs
// ... use %z ...
destroy_addr %z : $*A
dealloc_stack stack %z : $*A





The implementation of @bas is then responsible for consuming %x_arg and
initializing %z.

Tuple arguments are destructured regardless of the
address-only-ness of the tuple type. The destructured fields are passed
individually according to the above convention. This Swift function:

@API struct A {}

func zim(x:Int, y:A, (z:Int, w:(A, Int)))

zim(x, y, (z, w))





gets called in SIL as:

%zim = function_ref @zim : $(x:Int, y:A, (z:Int, w:(A, Int))) -> ()
%y_arg = alloc_stack $A
copy_addr %y to [initialize] %y_arg : $*A
%w_0_addr = element_addr %w : $*(A, Int), 0
%w_0_arg = alloc_stack $A
copy_addr %w_0_addr to [initialize] %w_0_arg : $*A
%w_1_addr = element_addr %w : $*(A, Int), 1
%w_1 = load %w_1_addr : $*Int
apply %zim(%x, %y_arg, %z, %w_0_arg, %w_1) : $(x:Int, y:A, (z:Int, w:(A, Int))) -> ()
dealloc_stack %w_0_arg
dealloc_stack %y_arg








Variadic Arguments

Variadic arguments and tuple elements are packaged into an array and passed as
a single array argument. This Swift function:

func zang(x:Int, (y:Int, z:Int...), v:Int, w:Int...)

zang(x, (y, z0, z1), v, w0, w1, w2)





gets called in SIL as:

%zang = function_ref @zang : $(x:Int, (y:Int, z:Int...), v:Int, w:Int...) -> ()
%zs = <<make array from %z1, %z2>>
%ws = <<make array from %w0, %w1, %w2>>
apply %zang(%x, %y, %zs, %v, %ws)  : $(x:Int, (y:Int, z:Int...), v:Int, w:Int...) -> ()








Function Currying

Curried function definitions in Swift emit multiple SIL entry points, one for
each “uncurry level” of the function. When a function is uncurried, its
outermost argument clauses are combined into a tuple in right-to-left order.
For the following declaration:

func curried(x:A)(y:B)(z:C)(w:D) -> Int {}





The types of the SIL entry points are as follows:

sil @curried_0 : $(x:A) -> (y:B) -> (z:C) -> (w:D) -> Int { ... }
sil @curried_1 : $((y:B), (x:A)) -> (z:C) -> (w:D) -> Int { ... }
sil @curried_2 : $((z:C), (y:B), (x:A)) -> (w:D) -> Int { ... }
sil @curried_3 : $((w:D), (z:C), (y:B), (x:A)) -> Int { ... }








@inout Arguments

@inout arguments are passed into the entry point by address. The callee
does not take ownership of the referenced memory. The referenced memory must
be initialized upon function entry and exit. If the @inout argument
refers to a fragile physical variable, then the argument is the address of that
variable. If the @inout argument refers to a logical property, then the
argument is the address of a caller-owned writeback buffer. It is the caller’s
responsibility to initialize the buffer by storing the result of the property
getter prior to calling the function and to write back to the property
on return by loading from the buffer and invoking the setter with the final
value. This Swift function:

func inout(x:@inout Int) {
  x = 1
}





gets lowered to SIL as:

sil @inout : $(@inout Int) -> () {
entry(%x : $*Int):
  %1 = integer_literal 1 : $Int
  store %1 to %x
  return
}










Swift Method Calling Convention @cc(method)

The method calling convention is currently identical to the freestanding
function convention. Methods are considered to be curried functions, taking
the “self” argument as their outer argument clause, and the method arguments
as the inner argument clause(s). When uncurried, the “self” argument is thus
passed last:

struct Foo {
  func method(x:Int) -> Int {}
}

sil @Foo_method_1 : $((x : Int), @inout Foo) -> Int { ... }








Witness Method Calling Convention @cc(witness_method)

The witness method calling convention is used by protocol witness methods in
witness tables. It is identical to the method calling convention
except that its handling of generic type parameters. For non-witness methods,
the machine-level convention for passing type parameter metadata may be
arbitrarily dependent on static aspects of the function signature, but because
witnesses must be polymorphically dispatchable on their Self type,
the Self-related metadata for a witness must be passed in a maximally
abstracted manner.




C Calling Convention @cc(cdecl)

In Swift’s C module importer, C types are always mapped to Swift types
considered trivial by SIL. SIL does not concern itself with platform
ABI requirements for indirect return, register vs. stack passing, etc.; C
function arguments and returns in SIL are always by value regardless of the
platform calling convention.

SIL (and therefore Swift) cannot currently invoke variadic C functions.




Objective-C Calling Convention @cc(objc_method)


Reference Counts

Objective-C methods use the same argument and return value ownership rules as
ARC Objective-C. Selector families and the ns_consumed,
ns_returns_retained, etc. attributes from imported Objective-C definitions
are honored.

Applying a @convention(block) value does not consume the block.




Method Currying

In SIL, the “self” argument of an Objective-C method is uncurried to the last
argument of the uncurried type, just like a native Swift method:

@objc class NSString {
  func stringByPaddingToLength(Int) withString(NSString) startingAtIndex(Int)
}

sil @NSString_stringByPaddingToLength_withString_startingAtIndex \
  : $((Int, NSString, Int), NSString)





That self is passed as the first argument at the IR level is abstracted
away in SIL, as is the existence of the _cmd selector argument.








Type Based Alias Analysis

SIL supports two types of Type Based Alias Analysis (TBAA): Class TBAA and
Typed Access TBAA.


Class TBAA

Class instances and other heap object references are pointers at the
implementation level, but unlike SIL addresses, they are first class values and
can be capture-d and alias. Swift, however, is memory-safe and statically
typed, so aliasing of classes is constrained by the type system as follows:


	A Builtin.NativeObject may alias any native Swift heap object,
including a Swift class instance, a box allocated by alloc_box,
or a thick function’s closure context.
It may not alias natively Objective-C class instances.

	A Builtin.UnknownObject may alias any class instance, whether Swift or
Objective-C, but may not alias non-class-instance heap objects.

	Two values of the same class type $C may alias. Two values of related
class type $B and $D, where there is a subclass relationship between
$B and $D, may alias. Two values of unrelated class types may not
alias. This includes different instantiations of a generic class type, such
as $C<Int> and $C<Float>, which currently may never alias.

	Without whole-program visibility, values of archetype or protocol type must
be assumed to potentially alias any class instance. Even if it is locally
apparent that a class does not conform to that protocol, another component
may introduce a conformance by an extension. Similarly, a generic class
instance, such as $C<T> for archetype T, must be assumed to
potentially alias concrete instances of the generic type, such as
$C<Int>, because Int is a potential substitution for T.






Typed Access TBAA

Define a typed access of an address or reference as one of the following:


	Any instruction that performs a typed read or write operation upon the memory
at the given location (e.x. load, store).

	Any instruction that yields a typed offset of the pointer by performing a
typed projection operation (e.x. ref_element_addr,
tuple_element_addr).



It is undefined behavior to perform a typed access to an address or reference if
the stored object or referent is not an allocated object of the relevant type.

This allows the optimizer to assume that two addresses cannot alias if there
does not exist a substitution of archetypes that could cause one of the types to
be the type of a subobject of the other. Additionally, this applies to the types
of the values from which the addresses were derived, ignoring “blessed”
alias-introducing operations such as pointer_to_address, the bitcast
intrinsic, and the inttoptr intrinsic.






Value Dependence

In general, analyses can assume that independent values are
independently assured of validity.  For example, a class method may
return a class reference:

bb0(%0 : $MyClass):
  %1 = class_method %0 : $MyClass, #MyClass.foo!1
  %2 = apply %1(%0) : $@cc(method) @thin (@guaranteed MyClass) -> @owned MyOtherClass
  // use of %2 goes here; no use of %1
  strong_release %2 : $MyOtherClass
  strong_release %1 : $MyClass





The optimizer is free to move the release of %1 to immediately
after the call here, because %2 can be assumed to be an
independently-managed value, and because Swift generally permits the
reordering of destructors.

However, some instructions do create values that are intrinsically
dependent on their operands.  For example, the result of
ref_element_addr will become a dangling pointer if the base is
released too soon.  This is captured by the concept of value dependence,
and any transformation which can reorder of destruction of a value
around another operation must remain conscious of it.

A value %1 is said to be value-dependent on a value %0 if:


	%1 is the result and %0 is the first operand of one of the
following instructions:
	ref_element_addr

	struct_element_addr

	tuple_element_addr

	unchecked_take_enum_data_addr

	pointer_to_address

	address_to_pointer

	index_addr

	index_raw_pointer

	possibly some other conversions





	%1 is the result of mark_dependence and %0 is either of
the operands.

	%1 is the value address of an allocation instruction of which
%0 is the local storage token or box reference.

	%1 is the result of a struct, tuple, or enum
instruction and %0 is an operand.

	%1 is the result of projecting out a subobject of %0
with tuple_extract, struct_extract, unchecked_enum_data,
select_enum, or select_enum_addr.

	%1 is the result of select_value and %0 is one of the cases.

	%1 is a basic block parameter and %0 is the corresponding
argument from a branch to that block.

	%1 is the result of a load from %0.  However, the value
dependence is cut after the first attempt to manage the value of
%1, e.g. by retaining it.

	Transitivity: there exists a value %2 which %1 depends on
and which depends on %0.  However, transitivity does not apply
to different subobjects of a struct, tuple, or enum.



Note, however, that an analysis is not required to track dependence
through memory.  Nor is it required to consider the possibility of
dependence being established “behind the scenes” by opaque code, such
as by a method returning an unsafe pointer to a class property.  The
dependence is required to be locally obvious in a function’s SIL
instructions.  Precautions must be taken against this either by SIL
generators (by using mark_dependence appropriately) or by the user
(by using the appropriate intrinsics and attributes with unsafe
language or library features).

Only certain types of SIL value can carry value-dependence:


	SIL address types

	unmanaged pointer types:
	@sil_unmanaged types

	Builtin.RawPointer

	aggregates containing such a type, such as UnsafePointer,
possibly recursively





	non-trivial types (but they can be independently managed)



This rule means that casting a pointer to an integer type breaks
value-dependence.  This restriction is necessary so that reading an
Int from a class doesn’t force the class to be kept around!
A class holding an unsafe reference to an object must use some
sort of unmanaged pointer type to do so.

This rule does not include generic or resilient value types which
might contain unmanaged pointer types.  Analyses are free to assume
that e.g. a copy_addr of a generic or resilient value type yields
an independently-managed value.  The extension of value dependence to
types containing obvious unmanaged pointer types is an affordance to
make the use of such types more convenient; it does not shift the
ultimate responsibility for assuring the safety of unsafe
language/library features away from the user.




Instruction Set


Allocation and Deallocation

These instructions allocate and deallocate memory.


alloc_stack

sil-instruction ::= 'alloc_stack' sil-type

%1 = alloc_stack $T
// %1#0 has type $*@local_storage T
// %1#1 has type $*T





Allocates uninitialized memory that is sufficiently aligned on the stack
to contain a value of type T. The first result of the instruction
is a local-storage handle suitable for passing to dealloc_stack.
The second result of the instruction is the address of the allocated memory.

alloc_stack marks the start of the lifetime of the value; the
allocation must be balanced with a dealloc_stack instruction to
mark the end of its lifetime. All alloc_stack allocations must be
deallocated prior to returning from a function. If a block has multiple
predecessors, the stack height and order of allocations must be consistent
coming from all predecessor blocks. alloc_stack allocations must be
deallocated in last-in, first-out stack order.

The memory is not retainable. To allocate a retainable box for a value
type, use alloc_box.




alloc_ref

sil-instruction ::= 'alloc_ref' ('[' 'objc' ']')? ('[' 'stack' ']')? sil-type

%1 = alloc_ref [stack] $T
// $T must be a reference type
// %1 has type $T





Allocates an object of reference type T. The object will be initialized
with retain count 1; its state will be otherwise uninitialized. The
optional objc attribute indicates that the object should be
allocated using Objective-C’s allocation methods (+allocWithZone:).
The optional stack attribute indicates that the object can be allocated
on the stack instead on the heap. In this case the instruction must have
balanced with a dealloc_ref [stack] instruction to mark the end of the
object’s lifetime.
Note that the stack attribute only specifies that stack allocation is
possible. The final decision on stack allocation is done during llvm IR
generation. This is because the decision also depends on the object size,
which is not necessarily known at SIL level.




alloc_ref_dynamic

sil-instruction ::= 'alloc_ref_dynamic' ('[' 'objc' ']')? sil-operand ',' sil-type

%1 = alloc_ref_dynamic %0 : $@thick T.Type, $T
%1 = alloc_ref_dynamic [objc] %0 : $@objc_metatype T.Type, $T
// $T must be a class type
// %1 has type $T





Allocates an object of class type T or a subclass thereof. The
dynamic type of the resulting object is specified via the metatype
value %0. The object will be initialized with retain count 1; its
state will be otherwise uninitialized. The optional objc attribute
indicates that the object should be allocated using Objective-C’s
allocation methods (+allocWithZone:).




alloc_box

sil-instruction ::= 'alloc_box' sil-type

%1 = alloc_box $T
// %1 has two values:
//   %1#0 has type $@box T
//   %1#1 has type $*T





Allocates a reference-counted @box on the heap large enough to hold a value
of type T, along with a retain count and any other metadata required by the
runtime.  The result of the instruction is a two-value operand; the first value
is the reference-counted @box reference that owns the box, and the second
value is the address of the value inside the box.

The box will be initialized with a retain count of 1; the storage will be
uninitialized. The box owns the contained value, and releasing it to a retain
count of zero destroys the contained value as if by destroy_addr.
Releasing a box is undefined behavior if the box’s value is uninitialized.
To deallocate a box whose value has not been initialized, dealloc_box
should be used.




alloc_value_buffer

sil-instruction ::= 'alloc_value_buffer' sil-type 'in' sil-operand

%1 = alloc_value_buffer $(Int, T) in %0 : $*Builtin.UnsafeValueBuffer
// The operand must have the exact type shown.
// The result has type $*(Int, T).





Given the address of an unallocated value buffer, allocate space in it
for a value of the given type.  This instruction has undefined
behavior if the value buffer is currently allocated.

The type operand must be a lowered object type.




dealloc_stack

sil-instruction ::= 'dealloc_stack' sil-operand

dealloc_stack %0 : $*@local_storage T
// %0 must be of a local-storage $*@local_storage T type





Deallocates memory previously allocated by alloc_stack. The
allocated value in memory must be uninitialized or destroyed prior to
being deallocated. This instruction marks the end of the lifetime for
the value created by the corresponding alloc_stack instruction. The operand
must be the @local_storage of the shallowest live alloc_stack
allocation preceding the deallocation. In other words, deallocations must be
in last-in, first-out stack order.




dealloc_box

sil-instruction ::= 'dealloc_box' sil-operand

dealloc_box %0 : $@box T





Deallocates a box, bypassing the reference counting mechanism. The box
variable must have a retain count of one. The boxed type must match the
type passed to the corresponding alloc_box exactly, or else
undefined behavior results.

This does not destroy the boxed value. The contents of the
value must have been fully uninitialized or destroyed before
dealloc_box is applied.




project_box

sil-instruction ::= 'project_box' sil-operand

%1 = project_box %0 : $@box T

// %1 has type $*T





Given a @box T reference, produces the address of the value inside the box.




dealloc_ref

sil-instruction ::= 'dealloc_ref' ('[' 'stack' ']')? sil-operand

dealloc_ref [stack] %0 : $T
// $T must be a class type





Deallocates an uninitialized class type instance, bypassing the reference
counting mechanism.

The type of the operand must match the allocated type exactly, or else
undefined behavior results.

The instance must have a retain count of one.

This does not destroy stored properties of the instance. The contents
of stored properties must be fully uninitialized at the time
dealloc_ref is applied.

The stack attribute indicates that the instruction is the balanced
deallocation of its operand which must be a alloc_ref [stack].
In this case the instruction marks the end of the object’s lifetime but
has no other effect.




dealloc_partial_ref

sil-instruction ::= 'dealloc_partial_ref' sil-operand sil-metatype

dealloc_partial_ref %0 : $T, %1 : $U.Type
// $T must be a class type
// $T must be a subclass of U





Deallocates a partially-initialized class type instance, bypassing
the reference counting mechanism.

The type of the operand must be a supertype of the allocated type, or
else undefined behavior results.

The instance must have a retain count of one.

All stored properties in classes more derived than the given metatype
value must be initialized, and all other stored properties must be
uninitialized. The initialized stored properties are destroyed before
deallocating the memory for the instance.

This does not destroy the reference type instance. The contents of the
heap object must have been fully uninitialized or destroyed before
dealloc_ref is applied.




dealloc_value_buffer

sil-instruction ::= 'dealloc_value_buffer' sil-type 'in' sil-operand

dealloc_value_buffer $(Int, T) in %0 : $*Builtin.UnsafeValueBuffer
// The operand must have the exact type shown.





Given the address of a value buffer, deallocate the storage in it.
This instruction has undefined behavior if the value buffer is not
currently allocated, or if it was allocated with a type other than the
type operand.

The type operand must be a lowered object type.




project_value_buffer

sil-instruction ::= 'project_value_buffer' sil-type 'in' sil-operand

%1 = project_value_buffer $(Int, T) in %0 : $*Builtin.UnsafeValueBuffer
// The operand must have the exact type shown.
// The result has type $*(Int, T).





Given the address of a value buffer, return the address of the value
storage in it.  This instruction has undefined behavior if the value
buffer is not currently allocated, or if it was allocated with a type
other than the type operand.

The result is the same value as was originally returned by
alloc_value_buffer.

The type operand must be a lowered object type.






Debug Information

Debug information is generally associated with allocations (alloc_stack or
alloc_box) by having a Decl node attached to the allocation with a SILLocation.
For declarations that have no allocation we have explicit instructions for
doing this.  This is used by ‘let’ declarations, which bind a value to a name
and for var decls who are promoted into registers.  The decl they refer to is
attached to the instruction with a SILLocation.


debug_value

sil-instruction ::= debug_value sil-operand

debug_value %1 : $Int





This indicates that the value of a declaration with loadable type has changed
value to the specified operand.  The declaration in question is identified by
the SILLocation attached to the debug_value instruction.

The operand must have loadable type.




debug_value_addr

sil-instruction ::= debug_value_addr sil-operand

debug_value_addr %7 : $*SomeProtocol





This indicates that the value of a declaration with address-only type
has changed value to the specified operand.  The declaration in
question is identified by the SILLocation attached to the
debug_value_addr instruction.






Accessing Memory


load

sil-instruction ::= 'load' sil-operand

%1 = load %0 : $*T
// %0 must be of a $*T address type for loadable type $T
// %1 will be of type $T





Loads the value at address %0 from memory. T must be a loadable type.
This does not affect the reference count, if any, of the loaded value; the
value must be retained explicitly if necessary. It is undefined behavior to
load from uninitialized memory or to load from an address that points to
deallocated storage.




store

sil-instruction ::= 'store' sil-value 'to' sil-operand

store %0 to %1 : $*T
// $T must be a loadable type





Stores the value %0 to memory at address %1.  The type of %1 is *T
and the type of %0 is ``T, which must be a loadable type. This will
overwrite the memory at %1. If %1 already references a value that
requires release or other cleanup, that value must be loaded before being
stored over and cleaned up. It is undefined behavior to store to an address
that points to deallocated storage.




assign

sil-instruction ::= 'assign' sil-value 'to' sil-operand

assign %0 to %1 : $*T
// $T must be a loadable type





Represents an abstract assignment of the value %0 to memory at address
%1 without specifying whether it is an initialization or a normal store.
The type of %1 is *T and the type of %0 is T, which must be a
loadable type. This will overwrite the memory at %1 and destroy the value
currently held there.

The purpose of the assign instruction is to simplify the
definitive initialization analysis on loadable variables by removing
what would otherwise appear to be a load and use of the current value.
It is produced by SILGen, which cannot know which assignments are
meant to be initializations.  If it is deemed to be an initialization,
it can be replaced with a store; otherwise, it must be replaced
with a sequence that also correctly destroys the current value.

This instruction is only valid in Raw SIL and is rewritten as appropriate
by the definitive initialization pass.




mark_uninitialized

sil-instruction ::= 'mark_uninitialized' '[' mu_kind ']' sil-operand
mu_kind ::= 'var'
mu_kind ::= 'rootself'
mu_kind ::= 'derivedself'
mu_kind ::= 'derivedselfonly'
mu_kind ::= 'delegatingself'

%2 = mark_uninitialized [var] %1 : $*T
// $T must be an address





Indicates that a symbolic memory location is uninitialized, and must be
explicitly initialized before it escapes or before the current function returns.
This instruction returns its operands, and all accesses within the function must
be performed against the return value of the mark_uninitialized instruction.

The kind of mark_uninitialized instruction specifies the type of data
the mark_uninitialized instruction refers to:


	var: designates the start of a normal variable live range

	rootself: designates self in a struct, enum, or root class

	derivedself: designates self in a derived (non-root) class

	derivedselfonly: designates self in a derived (non-root) class whose stored properties have already been initialized

	delegatingself: designates self on a struct, enum, or class in a delegating constructor (one that calls self.init)



The purpose of the mark_uninitialized instruction is to enable
definitive initialization analysis for global variables (when marked as
‘globalvar’) and instance variables (when marked as ‘rootinit’), which need to
be distinguished from simple allocations.

It is produced by SILGen, and is only valid in Raw SIL.  It is rewritten as
appropriate by the definitive initialization pass.




mark_function_escape

sil-instruction ::= 'mark_function_escape' sil-operand (',' sil-operand)

%2 = mark_function_escape %1 : $*T





Indicates that a function definition closes over a symbolic memory location.
This instruction is variadic, and all of its operands must be addresses.

The purpose of the mark_function_escape instruction is to enable
definitive initialization analysis for global variables and instance variables,
which are not represented as box allocations.

It is produced by SILGen, and is only valid in Raw SIL.  It is rewritten as
appropriate by the definitive initialization pass.




copy_addr

sil-instruction ::= 'copy_addr' '[take]'? sil-value
                      'to' '[initialization]'? sil-operand

copy_addr [take] %0 to [initialization] %1 : $*T
// %0 and %1 must be of the same $*T address type





Loads the value at address %0 from memory and assigns a copy of it back into
memory at address %1. A bare copy_addr instruction when T is a
non-trivial type:

copy_addr %0 to %1 : $*T





is equivalent to:

%new = load %0 : $*T        // Load the new value from the source
%old = load %1 : $*T        // Load the old value from the destination
strong_retain %new : $T            // Retain the new value
strong_release %old : $T           // Release the old
store %new to %1 : $*T      // Store the new value to the destination





except that copy_addr may be used even if %0 is of an address-only
type. The copy_addr may be given one or both of the [take] or
[initialization] attributes:


	[take] destroys the value at the source address in the course of the
copy.

	[initialization] indicates that the destination address is uninitialized.
Without the attribute, the destination address is treated as already
initialized, and the existing value will be destroyed before the new value
is stored.



The three attributed forms thus behave like the following loadable type
operations:

// take-assignment
  copy_addr [take] %0 to %1 : $*T
// is equivalent to:
  %new = load %0 : $*T
  %old = load %1 : $*T
  // no retain of %new!
  strong_release %old : $T
  store %new to %1 : $*T

// copy-initialization
  copy_addr %0 to [initialization] %1 : $*T
// is equivalent to:
  %new = load %0 : $*T
  strong_retain %new : $T
  // no load/release of %old!
  store %new to %1 : $*T

// take-initialization
  copy_addr [take] %0 to [initialization] %1 : $*T
// is equivalent to:
  %new = load %0 : $*T
  // no retain of %new!
  // no load/release of %old!
  store %new to %1 : $*T





If T is a trivial type, then copy_addr is always equivalent to its
take-initialization form.




destroy_addr

sil-instruction ::= 'destroy_addr' sil-operand

destroy_addr %0 : $*T
// %0 must be of an address $*T type





Destroys the value in memory at address %0. If T is a non-trivial type,
This is equivalent to:

%1 = load %0
strong_release %1





except that destroy_addr may be used even if %0 is of an
address-only type.  This does not deallocate memory; it only destroys the
pointed-to value, leaving the memory uninitialized.

If T is a trivial type, then destroy_addr is a no-op.




index_addr

sil-instruction ::= 'index_addr' sil-operand ',' sil-operand

%2 = index_addr %0 : $*T, %1 : $Builtin.Int<n>
// %0 must be of an address type $*T
// %1 must be of a builtin integer type
// %2 will be of type $*T





Given an address that references into an array of values, returns the address
of the %1-th element relative to %0. The address must reference into
a contiguous array. It is undefined to try to reference offsets within a
non-array value, such as fields within a homogeneous struct or tuple type, or
bytes within a value, using index_addr. (Int8 address types have no
special behavior in this regard, unlike char* or void* in C.) It is
also undefined behavior to index out of bounds of an array, except to index
the “past-the-end” address of the array.




index_raw_pointer

sil-instruction ::= 'index_raw_pointer' sil-operand ',' sil-operand

%2 = index_raw_pointer %0 : $Builtin.RawPointer, %1 : $Builtin.Int<n>
// %0 must be of $Builtin.RawPointer type
// %1 must be of a builtin integer type
// %2 will be of type $*T





Given a Builtin.RawPointer value %0, returns a pointer value at the
byte offset %1 relative to %0.






Reference Counting

These instructions handle reference counting of heap objects. Values of
strong reference type have ownership semantics for the referenced heap
object. Retain and release operations, however,
are never implicit in SIL and always must be explicitly performed where needed.
Retains and releases on the value may be freely moved, and balancing
retains and releases may deleted, so long as an owning retain count is
maintained for the uses of the value.

All reference-counting operations are defined to work correctly on
null references (whether strong, unowned, or weak).  A non-null
reference must actually refer to a valid object of the indicated type
(or a subtype).  Address operands are required to be valid and non-null.

While SIL makes reference-counting operations explicit, the SIL type
system also fully represents strength of reference.  This is useful
for several reasons:


	Type-safety: it is impossible to erroneously emit SIL that naively
uses a @weak or @unowned reference as if it were a strong
reference.

	Consistency: when a reference is kept in memory, instructions like
copy_addr and destroy_addr implicitly carry the right
semantics in the type of the address, rather than needing special
variants or flags.

	Ease of tooling: SIL directly stores the user’s intended strength
of reference, making it straightforward to generate instrumentation
that would convey this to a memory profiler.  In principle, with
only a modest number of additions and restrictions on SIL, it would
even be possible to drop all reference-counting instructions and
use the type information to feed a garbage collector.




strong_retain

sil-instruction ::= 'strong_retain' sil-operand

strong_retain %0 : $T
// $T must be a reference type





Increases the strong retain count of the heap object referenced by %0.




strong_retain_autoreleased

sil-instruction ::= 'strong_retain_autoreleased' sil-operand

strong_retain_autoreleased %0 : $T
// $T must have a retainable pointer representation





Retains the heap object referenced by %0 using the Objective-C ARC
“autoreleased return value” optimization. The operand must be the result of an
apply instruction with an Objective-C method callee, and the
strong_retain_autoreleased instruction must be first use of the value after
the defining apply instruction.

TODO: Specify all the other strong_retain_autoreleased constraints here.




strong_release

strong_release %0 : $T
// $T must be a reference type.





Decrements the strong reference count of the heap object referenced by %0.
If the release operation brings the strong reference count of the object to
zero, the object is destroyed and @weak references are cleared.  When both
its strong and unowned reference counts reach zero, the object’s memory is
deallocated.




strong_retain_unowned

sil-instruction ::= 'strong_retain_unowned' sil-operand

strong_retain_unowned %0 : $@unowned T
// $T must be a reference type





Asserts that the strong reference count of the heap object referenced by %0
is still positive, then increases it by one.




unowned_retain

sil-instruction ::= 'unowned_retain' sil-operand

unowned_retain %0 : $@unowned T
// $T must be a reference type





Increments the unowned reference count of the heap object underlying %0.




unowned_release

sil-instruction ::= 'unowned_release' sil-operand

unowned_release %0 : $@unowned T
// $T must be a reference type





Decrements the unowned reference count of the heap object refereced by
%0.  When both its strong and unowned reference counts reach zero,
the object’s memory is deallocated.




load_weak

sil-instruction ::= 'load_weak' '[take]'? sil-operand

load_weak [take] %0 : $*@sil_weak Optional<T>
// $T must be an optional wrapping a reference type





Increments the strong reference count of the heap object held in the operand,
which must be an initialized weak reference.  The result is value of type
$Optional<T>, except that it is null if the heap object has begun
deallocation.

This operation must be atomic with respect to the final strong_release on
the operand heap object.  It need not be atomic with respect to store_weak
operations on the same address.




store_weak

sil-instruction ::= 'store_weak' sil-value 'to' '[initialization]'? sil-operand

store_weak %0 to [initialization] %1 : $*@sil_weak Optional<T>
// $T must be an optional wrapping a reference type





Initializes or reassigns a weak reference.  The operand may be nil.

If [initialization] is given, the weak reference must currently either be
uninitialized or destroyed.  If it is not given, the weak reference must
currently be initialized.

This operation must be atomic with respect to the final strong_release on
the operand (source) heap object.  It need not be atomic with respect to
store_weak or load_weak operations on the same address.




fix_lifetime

sil-instruction :: 'fix_lifetime' sil-operand

fix_lifetime %0 : $T
// Fix the lifetime of a value %0
fix_lifetime %1 : $*T
// Fix the lifetime of the memory object referenced by %1





Acts as a use of a value operand, or of the value in memory referenced by an
address operand. Optimizations may not move operations that would destroy the
value, such as release_value, strong_release, copy_addr [take], or
destroy_addr, past this instruction.




mark_dependence

sil-instruction :: 'mark_dependence' sil-operand 'on' sil-operand

%2 = mark_dependence %0 : $*T on %1 : $Builtin.NativeObject





Indicates that the validity of the first operand depends on the value
of the second operand.  Operations that would destroy the second value
must not be moved before any instructions which depend on the result
of this instruction, exactly as if the address had been obviously
derived from that operand (e.g. using ref_element_addr).

The result is always equal to the first operand.  The first operand
will typically be an address, but it could be an address in a
non-obvious form, such as a Builtin.RawPointer or a struct containing
the same.  Transformations should be somewhat forgiving here.

The second operand may have either object or address type.  In the
latter case, the dependency is on the current value stored in the
address.




is_unique

sil-instruction ::= 'is_unique' sil-operand

%1 = is_unique %0 : $*T
// $T must be a reference-counted type
// %1 will be of type Builtin.Int1





Checks whether %0 is the address of a unique reference to a memory
object. Returns 1 if the strong reference count is 1, and 0 if the
strong reference count is greater than 1.

A discussion of the semantics can be found here:
is_unique instruction.




is_unique_or_pinned

sil-instruction ::= 'is_unique_or_pinned' sil-operand

%1 = is_unique_or_pinned %0 : $*T
// $T must be a reference-counted type
// %1 will be of type Builtin.Int1





Checks whether %0 is the address of either a unique reference to a
memory object or a reference to a pinned object. Returns 1 if the
strong reference count is 1 or the object has been marked pinned by
strong_pin.




copy_block

sil-instruction :: 'copy_block' sil-operand

%1 = copy_block %0 : $@convention(block) T -> U





Performs a copy of an Objective-C block. Unlike retains of other
reference-counted types, this can produce a different value from the operand
if the block is copied from the stack to the heap.






Literals

These instructions bind SIL values to literal constants or to global entities.


function_ref

sil-instruction ::= 'function_ref' sil-function-name ':' sil-type

%1 = function_ref @function : $@thin T -> U
// $@thin T -> U must be a thin function type
// %1 has type $T -> U





Creates a reference to a SIL function.




global_addr

sil-instruction ::= 'global_addr' sil-global-name ':' sil-type

%1 = global_addr @foo : $*Builtin.Word





Creates a reference to the address of a global variable.




integer_literal

sil-instruction ::= 'integer_literal' sil-type ',' int-literal

%1 = integer_literal $Builtin.Int<n>, 123
// $Builtin.Int<n> must be a builtin integer type
// %1 has type $Builtin.Int<n>





Creates an integer literal value. The result will be of type
Builtin.Int<n>, which must be a builtin integer type. The literal value
is specified using Swift’s integer literal syntax.




float_literal

sil-instruction ::= 'float_literal' sil-type ',' int-literal

%1 = float_literal $Builtin.FP<n>, 0x3F800000
// $Builtin.FP<n> must be a builtin floating-point type
// %1 has type $Builtin.FP<n>





Creates a floating-point literal value. The result will be of type ``
Builtin.FP<n>, which must be a builtin floating-point type. The literal
value is specified as the bitwise representation of the floating point value,
using Swift’s hexadecimal integer literal syntax.




string_literal

sil-instruction ::= 'string_literal' encoding string-literal
encoding ::= 'utf8'
encoding ::= 'utf16'

%1 = string_literal "asdf"
// %1 has type $Builtin.RawPointer





Creates a reference to a string in the global string table. The result
is a pointer to the data.  The referenced string is always nul-terminated. The
string literal value is specified using Swift’s string
literal syntax (though \() interpolations are not allowed).






Dynamic Dispatch

These instructions perform dynamic lookup of class and generic methods. They
share a common set of attributes:

sil-method-attributes ::= '[' 'volatile'? ']'





The volatile attribute on a dynamic dispatch instruction indicates that
the method lookup is semantically required (as, for example, in Objective-C).
When the type of a dynamic dispatch instruction’s operand is known,
optimization passes can promote non-volatile dispatch instructions
into static function_ref instructions.

If a dynamic dispatch instruction references an Objective-C method
(indicated by the foreign marker on a method reference, as in
#NSObject.description!1.foreign), then the instruction
represents an objc_msgSend invocation. objc_msgSend invocations can
only be used as the callee of an apply instruction or partial_apply
instruction. They cannot be stored or used as apply or partial_apply
arguments.  objc_msgSend invocations must always be volatile.


class_method

sil-instruction ::= 'class_method' sil-method-attributes?
                      sil-operand ',' sil-decl-ref ':' sil-type

%1 = class_method %0 : $T, #T.method!1 : $@thin U -> V
// %0 must be of a class type or class metatype $T
// #T.method!1 must be a reference to a dynamically-dispatched method of T or
// of one of its superclasses, at uncurry level >= 1
// %1 will be of type $U -> V





Looks up a method based on the dynamic type of a class or class metatype
instance. It is undefined behavior if the class value is null and the
method is not an Objective-C method.

If:


	the instruction is not [volatile],

	the referenced method is not a foreign method,

	and the static type of the class instance is known, or the method is known
to be final,



then the instruction is a candidate for devirtualization optimization. A
devirtualization pass can consult the module’s VTables to find the
SIL function that implements the method and promote the instruction to a
static function_ref.




super_method

sil-instruction ::= 'super_method' sil-method-attributes?
                      sil-operand ',' sil-decl-ref ':' sil-type

%1 = super_method %0 : $T, #Super.method!1.foreign : $@thin U -> V
// %0 must be of a non-root class type or class metatype $T
// #Super.method!1.foreign must be a reference to an ObjC method of T's
// superclass or of one of its ancestor classes, at uncurry level >= 1
// %1 will be of type $@thin U -> V





Looks up a method in the superclass of a class or class metatype instance.
Note that for native Swift methods, super.method calls are statically
dispatched, so this instruction is only valid for Objective-C methods.
It is undefined behavior if the class value is null and the method is
not an Objective-C method.




witness_method

sil-instruction ::= 'witness_method' sil-method-attributes?
                      sil-type ',' sil-decl-ref ':' sil-type

%1 = witness_method $T, #Proto.method!1 \
  : $@thin @cc(witness_method) <Self: Proto> U -> V
// $T must be an archetype
// #Proto.method!1 must be a reference to a method of one of the protocol
//   constraints on T
// <Self: Proto> U -> V must be the type of the referenced method,
//   generic on Self
// %1 will be of type $@thin <Self: Proto> U -> V





Looks up the implementation of a protocol method for a generic type variable
constrained by that protocol. The result will be generic on the Self
archetype of the original protocol and have the witness_method calling
convention. If the referenced protocol is an @objc protocol, the
resulting type has the objc calling convention.




dynamic_method

sil-instruction ::= 'dynamic_method' sil-method-attributes?
                    sil-operand ',' sil-decl-ref ':' sil-type

%1 = dynamic_method %0 : $P, #X.method!1 : $@thin U -> V
// %0 must be of a protocol or protocol composition type $P,
// where $P contains the Swift.DynamicLookup protocol
// #X.method!1 must be a reference to an @objc method of any class
// or protocol type
//
// The "self" argument of the method type $@thin U -> V must be
//   Builtin.ObjCPointer





Looks up the implementation of an Objective-C method with the same
selector as the named method for the dynamic type of the
value inside an existential container. The “self” operand of the result
function value is represented using an opaque type, the value for which must
be projected out as a value of type Builtin.ObjCPointer.

It is undefined behavior if the dynamic type of the operand does not
have an implementation for the Objective-C method with the selector to
which the dynamic_method instruction refers, or if that
implementation has parameter or result types that are incompatible
with the method referenced by dynamic_method.
This instruction should only be used in cases where its result will be
immediately consumed by an operation that performs the selector check
itself (e.g., an apply that lowers to objc_msgSend).
To query whether the operand has an implementation for the given
method and safely handle the case where it does not, use
dynamic_method_br.






Function Application

These instructions call functions or wrap them in partial application or
specialization thunks.


apply

sil-instruction ::= 'apply' '[nothrow]'? sil-value
                      sil-apply-substitution-list?
                      '(' (sil-value (',' sil-value)*)? ')'
                      ':' sil-type

sil-apply-substitution-list ::= '<' sil-substitution
                                    (',' sil-substitution)* '>'
sil-substitution ::= type '=' type

%r = apply %0(%1, %2, ...) : $(A, B, ...) -> R
// Note that the type of the callee '%0' is specified *after* the arguments
// %0 must be of a concrete function type $(A, B, ...) -> R
// %1, %2, etc. must be of the argument types $A, $B, etc.
// %r will be of the return type $R

%r = apply %0<T = A, U = B>(%1, %2, ...) : $<T, U>(T, U, ...) -> R
// %0 must be of a polymorphic function type $<T, U>(T, U, ...) -> R
// %1, %2, etc. must be of the argument types after substitution $A, $B, etc.
// %r will be of the substituted return type $R'





Transfers control to function %0, passing it the given arguments. In
the instruction syntax, the type of the callee is specified after the argument
list; the types of the argument and of the defined value are derived from the
function type of the callee. The input argument tuple type is destructured,
and each element is passed as an individual argument. The apply
instruction does no retaining or releasing of its arguments by itself; the
calling convention‘s retain/release policy must be handled by separate
explicit retain and release instructions. The return value will
likewise not be implicitly retained or released.

The callee value must have function type.  That function type may not
have an error result, except the instruction has the nothrow attribute set.
The nothrow attribute specifies that the callee has an error result but
does not actually throw.
For the regular case of calling a function with error result, use try_apply.

NB: If the callee value is of a thick function type, apply currently
consumes the callee value at +1 strong retain count.

If the callee is generic, all of its generic parameters must be bound by the
given substitution list. The arguments and return value is
given with these generic substitutions applied.




partial_apply

sil-instruction ::= 'partial_apply' sil-value
                      sil-apply-substitution-list?
                      '(' (sil-value (',' sil-value)*)? ')'
                      ':' sil-type

%c = partial_apply %0(%1, %2, ...) : $(Z..., A, B, ...) -> R
// Note that the type of the callee '%0' is specified *after* the arguments
// %0 must be of a concrete function type $(Z..., A, B, ...) -> R
// %1, %2, etc. must be of the argument types $A, $B, etc.,
//   of the tail part of the argument tuple of %0
// %c will be of the partially-applied thick function type (Z...) -> R

%c = partial_apply %0<T = A, U = B>(%1, %2, ...) : $(Z..., T, U, ...) -> R
// %0 must be of a polymorphic function type $<T, U>(T, U, ...) -> R
// %1, %2, etc. must be of the argument types after substitution $A, $B, etc.
//   of the tail part of the argument tuple of %0
// %r will be of the substituted thick function type $(Z'...) -> R'





Creates a closure by partially applying the function %0 to a partial
sequence of its arguments. In the instruction syntax, the type of the callee is
specified after the argument list; the types of the argument and of the defined
value are derived from the function type of the callee. The closure context will
be allocated with retain count 1 and initialized to contain the values %1,
%2, etc.  The closed-over values will not be retained; that must be done
separately before the partial_apply. The closure does however take
ownership of the partially applied arguments; when the closure reference
count reaches zero, the contained values will be destroyed.

If the callee is generic, all of its generic parameters must be bound by the
given substitution list. The arguments are given with these generic
substitutions applied, and the resulting closure is of concrete function
type with the given substitutions applied. The generic parameters themselves
cannot be partially applied; all of them must be bound. The result is always
a concrete function.

TODO: The instruction, when applied to a generic function,
currently implicitly performs abstraction difference transformations enabled
by the given substitutions, such as promoting address-only arguments and returns
to register arguments. This should be fixed.

This instruction is used to implement both curry thunks and closures. A
curried function in Swift:

func foo(a:A)(b:B)(c:C)(d:D) -> E { /* body of foo */ }





emits curry thunks in SIL as follows (retains and releases omitted for
clarity):

func @foo : $@thin A -> B -> C -> D -> E {
entry(%a : $A):
  %foo_1 = function_ref @foo_1 : $@thin (B, A) -> C -> D -> E
  %thunk = partial_apply %foo_1(%a) : $@thin (B, A) -> C -> D -> E
  return %thunk : $B -> C -> D -> E
}

func @foo_1 : $@thin (B, A) -> C -> D -> E {
entry(%b : $B, %a : $A):
  %foo_2 = function_ref @foo_2 : $@thin (C, B, A) -> D -> E
  %thunk = partial_apply %foo_2(%b, %a) : $@thin (C, B, A) -> D -> E
  return %thunk : $(B, A) -> C -> D -> E
}

func @foo_2 : $@thin (C, B, A) -> D -> E {
entry(%c : $C, %b : $B, %a : $A):
  %foo_3 = function_ref @foo_3 : $@thin (D, C, B, A) -> E
  %thunk = partial_apply %foo_3(%c, %b, %a) : $@thin (D, C, B, A) -> E
  return %thunk : $(C, B, A) -> D -> E
}

func @foo_3 : $@thin (D, C, B, A) -> E {
entry(%d : $D, %c : $C, %b : $B, %a : $A):
  // ... body of foo ...
}





A local function in Swift that captures context, such as bar in the
following example:

func foo(x:Int) -> Int {
  func bar(y:Int) -> Int {
    return x + y
  }
  return bar(1)
}





lowers to an uncurried entry point and is curried in the enclosing function:

func @bar : $@thin (Int, @box Int, *Int) -> Int {
entry(%y : $Int, %x_box : $@box Int, %x_address : $*Int):
  // ... body of bar ...
}

func @foo : $@thin Int -> Int {
entry(%x : $Int):
  // Create a box for the 'x' variable
  %x_box = alloc_box $Int
  store %x to %x_box#1 : $*Int

  // Create the bar closure
  %bar_uncurried = function_ref @bar : $(Int, Int) -> Int
  %bar = partial_apply %bar_uncurried(%x_box#0, %x_box#1) \
    : $(Int, Builtin.ObjectPointer, *Int) -> Int

  // Apply it
  %1 = integer_literal $Int, 1
  %ret = apply %bar(%1) : $(Int) -> Int

  // Clean up
  release %bar : $(Int) -> Int
  return %ret : $Int
}








builtin

sil-instruction ::= 'builtin' string-literal
                      sil-apply-substitution-list?
                      '(' (sil-operand (',' sil-operand)*)? ')'
                      ':' sil-type

%1 = builtin "foo"(%1 : $T, %2 : $U) : $V
// "foo" must name a function in the Builtin module





Invokes functionality built into the backend code generator, such as LLVM-
level instructions and intrinsics.






Metatypes

These instructions access metatypes, either statically by type name or
dynamically by introspecting class or generic values.


metatype

sil-instruction ::= 'metatype' sil-type

%1 = metatype $T.metatype
// %1 has type $T.metatype





Creates a reference to the metatype object for type T.




value_metatype

sil-instruction ::= 'value_metatype' sil-type ',' sil-operand

%1 = value_metatype $T.metatype, %0 : $T
// %0 must be a value or address of type $T
// %1 will be of type $T.metatype





Obtains a reference to the dynamic metatype of the value %0.




existential_metatype

sil-instruction ::= 'existential_metatype' sil-type ',' sil-operand

%1 = existential_metatype $P.metatype, %0 : $P
// %0 must be a value of class protocol or protocol composition
//   type $P, or an address of address-only protocol type $*P
// %1 will be a $P.metatype value referencing the metatype of the
//   concrete value inside %0





Obtains the metatype of the concrete value
referenced by the existential container referenced by %0.




objc_protocol

sil-instruction ::= 'objc_protocol' protocol-decl : sil-type

%0 = objc_protocol #ObjCProto : $Protocol





TODO Fill this in.






Aggregate Types

These instructions construct and project elements from structs, tuples, and
class instances.


retain_value

sil-instruction ::= 'retain_value' sil-operand

retain_value %0 : $A





Retains a loadable value, which simply retains any references it holds.

For trivial types, this is a no-op.  For reference types, this is equivalent to
a strong_retain.  For @unowned types, this is equivalent to an
unowned_retain.  In each of these cases, those are the preferred forms.

For aggregate types, especially enums, it is typically both easier
and more efficient to reason about aggregate copies than it is to
reason about copies of the subobjects.




release_value

sil-instruction ::= 'release_value' sil-operand

release_value %0 : $A





Destroys a loadable value, by releasing any retainable pointers within it.

This is defined to be equivalent to storing the operand into a stack
allocation and using ‘destroy_addr’ to destroy the object there.

For trivial types, this is a no-op.  For reference types, this is
equivalent to a strong_release.  For @unowned types, this is
equivalent to an unowned_release.  In each of these cases, those
are the preferred forms.

For aggregate types, especially enums, it is typically both easier
and more efficient to reason about aggregate destroys than it is to
reason about destroys of the subobjects.




autorelease_value

sil-instruction ::= 'autorelease_value' sil-operand

autorelease_value %0 : $A





TODO Complete this section.




tuple

sil-instruction ::= 'tuple' sil-tuple-elements
sil-tuple-elements ::= '(' (sil-operand (',' sil-operand)*)? ')'
sil-tuple-elements ::= sil-type '(' (sil-value (',' sil-value)*)? ')'

%1 = tuple (%a : $A, %b : $B, ...)
// $A, $B, etc. must be loadable non-address types
// %1 will be of the "simple" tuple type $(A, B, ...)

%1 = tuple $(a:A, b:B, ...) (%a, %b, ...)
// (a:A, b:B, ...) must be a loadable tuple type
// %1 will be of the type $(a:A, b:B, ...)





Creates a loadable tuple value by aggregating multiple loadable values.

If the destination type is a “simple” tuple type, that is, it has no keyword
argument labels or variadic arguments, then the first notation can be used,
which interleaves the element values and types. If keyword names or variadic
fields are specified, then the second notation must be used, which spells out
the tuple type before the fields.




tuple_extract

sil-instruction ::= 'tuple_extract' sil-operand ',' int-literal

%1 = tuple_extract %0 : $(T...), 123
// %0 must be of a loadable tuple type $(T...)
// %1 will be of the type of the selected element of %0





Extracts an element from a loadable tuple value.




tuple_element_addr

sil-instruction ::= 'tuple_element_addr' sil-operand ',' int-literal

%1 = tuple_element_addr %0 : $*(T...), 123
// %0 must of a $*(T...) address-of-tuple type
// %1 will be of address type $*U where U is the type of the 123rd
//   element of T





Given the address of a tuple in memory, derives the
address of an element within that value.




struct

sil-instruction ::= 'struct' sil-type '(' (sil-operand (',' sil-operand)*)? ')'

%1 = struct $S (%a : $A, %b : $B, ...)
// $S must be a loadable struct type
// $A, $B, ... must be the types of the physical 'var' fields of $S in order
// %1 will be of type $S





Creates a value of a loadable struct type by aggregating multiple loadable
values.




struct_extract

sil-instruction ::= 'struct_extract' sil-operand ',' sil-decl-ref

%1 = struct_extract %0 : $S, #S.field
// %0 must be of a loadable struct type $S
// #S.field must be a physical 'var' field of $S
// %1 will be of the type of the selected field of %0





Extracts a physical field from a loadable struct value.




struct_element_addr

sil-instruction ::= 'struct_element_addr' sil-operand ',' sil-decl-ref

%1 = struct_element_addr %0 : $*S, #S.field
// %0 must be of a struct type $S
// #S.field must be a physical 'var' field of $S
// %1 will be the address of the selected field of %0





Given the address of a struct value in memory, derives the address of a
physical field within the value.




ref_element_addr

sil-instruction ::= 'ref_element_addr' sil-operand ',' sil-decl-ref

%1 = ref_element_addr %0 : $C, #C.field
// %0 must be a value of class type $C
// #C.field must be a non-static physical field of $C
// %1 will be of type $*U where U is the type of the selected field
//   of C





Given an instance of a class, derives the address of a physical instance
variable inside the instance. It is undefined behavior if the class value
is null.






Enums

These instructions construct values of enum type. Loadable enum values are
created with the enum instruction. Address-only enums require two-step
initialization. First, if the case requires data, that data is stored into
the enum at the address projected by init_enum_data_addr. This step is
skipped for cases without data. Finally, the tag for
the enum is injected with an inject_enum_addr instruction:

enum AddressOnlyEnum {
  case HasData(AddressOnlyType)
  case NoData
}

sil @init_with_data : $(AddressOnlyType) -> AddressOnlyEnum {
entry(%0 : $*AddressOnlyEnum, %1 : $*AddressOnlyType):
  // Store the data argument for the case.
  %2 = init_enum_data_addr %0 : $*AddressOnlyEnum, #AddressOnlyEnum.HasData
  copy_addr [take] %2 to [initialization] %1 : $*AddressOnlyType
  // Inject the tag.
  inject_enum_addr %0 : $*AddressOnlyEnum, #AddressOnlyEnum.HasData
  return
}

sil @init_without_data : $() -> AddressOnlyEnum {
  // No data. We only need to inject the tag.
  inject_enum_addr %0 : $*AddressOnlyEnum, #AddressOnlyEnum.NoData
  return
}





Accessing the value of a loadable enum is inseparable from dispatching on its
discriminator and is done with the switch_enum terminator:

enum Foo { case A(Int), B(String) }

sil @switch_foo : $(Foo) -> () {
entry(%foo : $Foo):
  switch_enum %foo : $Foo, case #Foo.A: a_dest, case #Foo.B: b_dest

a_dest(%a : $Int):
  /* use %a */

b_dest(%b : $String):
  /* use %b */
}





An address-only enum can be tested by branching on it using the
switch_enum_addr terminator. Its value can then be taken by destructively
projecting the enum value with unchecked_take_enum_data_addr:

enum Foo<T> { case A(T), B(String) }

sil @switch_foo : $<T> (Foo<T>) -> () {
entry(%foo : $*Foo<T>):
  switch_enum_addr %foo : $*Foo<T>, case #Foo.A: a_dest, case #Foo.B: b_dest

a_dest:
  %a = unchecked_take_enum_data_addr %foo : $*Foo<T>, #Foo.A
  /* use %a */

b_dest:
  %b = unchecked_take_enum_data_addr %foo : $*Foo<T>, #Foo.B
  /* use %b */
}






enum

sil-instruction ::= 'enum' sil-type ',' sil-decl-ref (',' sil-operand)?

%1 = enum $U, #U.EmptyCase
%1 = enum $U, #U.DataCase, %0 : $T
// $U must be an enum type
// #U.DataCase or #U.EmptyCase must be a case of enum $U
// If #U.Case has a data type $T, %0 must be a value of type $T
// If #U.Case has no data type, the operand must be omitted
// %1 will be of type $U





Creates a loadable enum value in the given case. If the case has a
data type, the enum value will contain the operand value.




unchecked_enum_data

sil-instruction ::= 'unchecked_enum_data' sil-operand ',' sil-decl-ref

%1 = unchecked_enum_data %0 : $U, #U.DataCase
// $U must be an enum type
// #U.DataCase must be a case of enum $U with data
// %1 will be of object type $T for the data type of case U.DataCase





Unsafely extracts the payload data for an enum case from an enum value.
It is undefined behavior if the enum does not contain a value of the given
case.




init_enum_data_addr

sil-instruction ::= 'init_enum_data_addr' sil-operand ',' sil-decl-ref

%1 = init_enum_data_addr %0 : $*U, #U.DataCase
// $U must be an enum type
// #U.DataCase must be a case of enum $U with data
// %1 will be of address type $*T for the data type of case U.DataCase





Projects the address of the data for an enum case inside an enum. This
does not modify the enum or check its value. It is intended to be used as
part of the initialization sequence for an address-only enum. Storing to
the init_enum_data_addr for a case followed by inject_enum_addr with that
same case is guaranteed to result in a fully-initialized enum value of that
case being stored. Loading from the init_enum_data_addr of an initialized
enum value or injecting a mismatched case tag is undefined behavior.

The address is invalidated as soon as the operand enum is fully initialized by
an inject_enum_addr.




inject_enum_addr

sil-instruction ::= 'inject_enum_addr' sil-operand ',' sil-decl-ref

inject_enum_addr %0 : $*U, #U.Case
// $U must be an enum type
// #U.Case must be a case of enum $U
// %0 will be overlaid with the tag for #U.Case





Initializes the enum value referenced by the given address by overlaying the
tag for the given case. If the case has no data, this instruction is sufficient
to initialize the enum value. If the case has data, the data must be stored
into the enum at the init_enum_data_addr address for the case before
inject_enum_addr is applied. It is undefined behavior if
inject_enum_addr is applied for a case with data to an uninitialized enum,
or if inject_enum_addr is applied for a case with data when data for a
mismatched case has been stored to the enum.




unchecked_take_enum_data_addr

sil-instruction ::= 'unchecked_take_enum_data_addr' sil-operand ',' sil-decl-ref

%1 = unchecked_take_enum_data_addr %0 : $*U, #U.DataCase
// $U must be an enum type
// #U.DataCase must be a case of enum $U with data
// %1 will be of address type $*T for the data type of case U.DataCase





Invalidates an enum value, and takes the address of the payload for the given
enum case in-place in memory. The referenced enum value is no longer valid,
but the payload value referenced by the result address is valid and must be
destroyed. It is undefined behavior if the referenced enum does not contain a
value of the given case. The result shares memory with the original enum
value; the enum memory cannot be reinitialized as an enum until the payload has
also been invalidated.

(1.0 only)

For the first payloaded case of an enum, unchecked_take_enum_data_addr
is guaranteed to have no side effects; the enum value will not be invalidated.




select_enum

sil-instruction ::= 'select_enum' sil-operand sil-select-case*
                    (',' 'default' sil-value)?
                    ':' sil-type

%n = select_enum %0 : $U,      \
  case #U.Case1: %1,           \
  case #U.Case2: %2, /* ... */ \
  default %3 : $T

// $U must be an enum type
// #U.Case1, Case2, etc. must be cases of enum $U
// %1, %2, %3, etc. must have type $T
// %n has type $T





Selects one of the “case” or “default” operands based on the case of an
enum value. This is equivalent to a trivial switch_enum branch sequence:

entry:
  switch_enum %0 : $U,            \
    case #U.Case1: bb1,           \
    case #U.Case2: bb2, /* ... */ \
    default bb_default
bb1:
  br cont(%1 : $T) // value for #U.Case1
bb2:
  br cont(%2 : $T) // value for #U.Case2
bb_default:
  br cont(%3 : $T) // value for default
cont(%n : $T):
  // use argument %n





but turns the control flow dependency into a data flow dependency.
For address-only enums, select_enum_addr offers the same functionality for
an indirectly referenced enum value in memory.




select_enum_addr

sil-instruction ::= 'select_enum_addr' sil-operand sil-select-case*
                    (',' 'default' sil-value)?
                    ':' sil-type

%n = select_enum_addr %0 : $*U,      \
  case #U.Case1: %1,           \
  case #U.Case2: %2, /* ... */ \
  default %3 : $T

// %0 must be the address of an enum type $*U
// #U.Case1, Case2, etc. must be cases of enum $U
// %1, %2, %3, etc. must have type $T
// %n has type $T





Selects one of the “case” or “default” operands based on the case of the
referenced enum value. This is the address-only counterpart to
select_enum.






Protocol and Protocol Composition Types

These instructions create and manipulate values of protocol and protocol
composition type.  From SIL’s perspective, protocol and protocol composition
types consist of an existential container, which is a generic container for
a value of unknown runtime type, referred to as an “existential type” in type
theory. The existential container consists of a reference to the
witness table(s) for the protocol(s) referred to by the protocol type and a
reference to the underlying concrete value, which may be either stored
in-line inside the existential container for small values or allocated
separately into a buffer owned and managed by the existential container for
larger values.

Depending on the constraints applied to an existential type, an existential
container may use one of several representations:


	Opaque existential containers: If none of the protocols in a protocol
type are class protocols, then the existential container for that type is
address-only and referred to in the implementation as an opaque existential
container. The value semantics of the existential container propagate to the
contained concrete value. Applying copy_addr to an opaque existential
container copies the contained concrete value, deallocating or reallocating
the destination container’s owned buffer if necessary. Applying
destroy_addr to an opaque existential container destroys the concrete
value and deallocates any buffers owned by the existential container. The
following instructions manipulate opaque existential containers:
	init_existential_addr

	open_existential_addr

	deinit_existential_addr





	Class existential containers: If a protocol type is constrained by one or
more class protocols, then the existential container for that type is
loadable and referred to in the implementation as a class existential
container. Class existential containers have reference semantics and can be
retain-ed and release-d. The following instructions manipulate class
existential containers:
	init_existential_ref

	open_existential_ref





	Metatype existential containers: Existential metatypes use a
container consisting of the type metadata for the conforming type along with
the protocol conformances. Metatype existential containers are trivial types.
The following instructions manipulate metatype existential containers:
	init_existential_metatype

	open_existential_metatype





	Boxed existential containers: The standard library ErrorType protocol
uses a size-optimized reference-counted container, which indirectly stores
the conforming value. Boxed existential containers can be retain-ed
and release-d. The following instructions manipulate boxed existential
containers:
	alloc_existential_box

	open_existential_box

	dealloc_existential_box







Some existential types may additionally support specialized representations
when they contain certain known concrete types. For example, when Objective-C
interop is available, the ErrorType protocol existential supports
a class existential container representation for NSError objects, so it
can be initialized from one using init_existential_ref instead of the
more expensive alloc_existential_box:

bb(%nserror: $NSError):
  // The slow general way to form an ErrorType, allocating a box and
  // storing to its value buffer:
  %error1 = alloc_existential_box $ErrorType, $NSError
  strong_retain %nserror: $NSError
  store %nserror to %error1#1 : $NSError

  // The fast path supported for NSError:
  strong_retain %nserror: $NSError
  %error2 = init_existential_ref %nserror: $NSError, $ErrorType






init_existential_addr

sil-instruction ::= 'init_existential_addr' sil-operand ',' sil-type

%1 = init_existential_addr %0 : $*P, $T
// %0 must be of a $*P address type for non-class protocol or protocol
//   composition type P
// $T must be an AST type that fulfills protocol(s) P
// %1 will be of type $*T', where T' is the maximally abstract lowering
//    of type T





Partially initializes the memory referenced by %0 with an existential
container prepared to contain a value of type $T. The result of the
instruction is an address referencing the storage for the contained value, which
remains uninitialized. The contained value must be store-d or
copy_addr-ed to in order for the existential value to be fully initialized.
If the existential container needs to be destroyed while the contained value
is uninitialized, deinit_existential_addr must be used to do so. A fully
initialized existential container can be destroyed with destroy_addr as
usual. It is undefined behavior to destroy_addr a partially-initialized
existential container.




deinit_existential_addr

sil-instruction ::= 'deinit_existential_addr' sil-operand

deinit_existential_addr %0 : $*P
// %0 must be of a $*P address type for non-class protocol or protocol
// composition type P





Undoes the partial initialization performed by
init_existential_addr.  deinit_existential_addr is only valid for
existential containers that have been partially initialized by
init_existential_addr but haven’t had their contained value initialized.
A fully initialized existential must be destroyed with destroy_addr.




open_existential_addr

sil-instruction ::= 'open_existential_addr' sil-operand 'to' sil-type

%1 = open_existential_addr %0 : $*P to $*@opened P
// %0 must be of a $*P type for non-class protocol or protocol composition
//   type P
// $*@opened P must be a unique archetype that refers to an opened
// existential type P.
// %1 will be of type $*P





Obtains the address of the concrete value inside the existential
container referenced by %0. The protocol conformances associated
with this existential container are associated directly with the
archetype $*@opened P. This pointer can be used with any operation
on archetypes, such as witness_method.




init_existential_ref

sil-instruction ::= 'init_existential_ref' sil-operand ':' sil-type ','
                                           sil-type

%1 = init_existential_ref %0 : $C' : $C, $P
// %0 must be of class type $C', lowered from AST type $C, conforming to
//    protocol(s) $P
// $P must be a class protocol or protocol composition type
// %1 will be of type $P





Creates a class existential container of type $P containing a reference to
the class instance %0.




open_existential_ref

sil-instruction ::= 'open_existential_ref' sil-operand 'to' sil-type

%1 = open_existential_ref %0 : $P to $@opened P
// %0 must be of a $P type for a class protocol or protocol composition
// $@opened P must be a unique archetype that refers to an opened
//   existential type P
// %1 will be of type $@opened P





Extracts the class instance reference from a class existential
container. The protocol conformances associated with this existential
container are associated directly with the archetype @opened P. This
pointer can be used with any operation on archetypes, such as
witness_method. When the operand is of metatype type, the result
will be the metatype of the opened archetype.




init_existential_metatype

sil-instruction ::= 'init_existential_metatype' sil-operand ',' sil-type

%1 = init_existential_metatype $0 : $@<rep> T.Type, $@<rep> P.Type
// %0 must be of a metatype type $@<rep> T.Type where T: P
// %@<rep> P.Type must be the existential metatype of a protocol or protocol
//    composition, with the same metatype representation <rep>
// %1 will be of type $@<rep> P.Type





Creates a metatype existential container of type $P.Type containing the
conforming metatype of $T.




open_existential_metatype

sil-instruction ::= 'open_existential_metatype' sil-operand 'to' sil-type

%1 = open_existential_metatype %0 : $@<rep> P.Type to $@<rep> (@opened P).Type
// %0 must be of a $P.Type existential metatype for a protocol or protocol
//    composition
// $@<rep> (@opened P).Type must be the metatype of a unique archetype that
//   refers to an opened existential type P, with the same metatype
//   representation <rep>
// %1 will be of type $@<rep> (@opened P).Type





Extracts the metatype from an existential metatype. The protocol conformances associated with this existential
container are associated directly with the archetype @opened P.




alloc_existential_box

sil-instruction ::= 'alloc_existential_box' sil-type ',' sil-type

%1 = alloc_existential_box $P, $T
// $P must be a protocol or protocol composition type with boxed
//   representation
// $T must be an AST type that conforms to P
// %1#0 will be of type $P
// %1#1 will be of type $*T', where T' is the most abstracted lowering of T





Allocates a boxed existential container of type $P with space to hold a
value of type $T'. The box is not fully initialized until a valid value
has been stored into the box. If the box must be deallocated before it is
fully initialized, dealloc_existential_box must be used. A fully
initialized box can be retain-ed and release-d like any
reference-counted type.  The address %0#1 is dependent on the lifetime of
the owner reference %0#0.




open_existential_box

sil-instruction ::= 'open_existential_box' sil-operand 'to' sil-type

%1 = open_existential_box %0 : $P to $*@opened P
// %0 must be a value of boxed protocol or protocol composition type $P
// %@opened P must be the address type of a unique archetype that refers to
///   an opened existential type P
// %1 will be of type $*@opened P





Projects the address of the value inside a boxed existential container, and
uses the enclosed type and protocol conformance metadata to bind the
opened archetype $@opened P. The result address is dependent on both
the owning box and the enclosing function; in order to “open” a boxed
existential that has directly adopted a class reference, temporary scratch
space may need to have been allocated.




dealloc_existential_box

sil-instruction ::= 'dealloc_existential_box' sil-operand, sil-type

dealloc_existential_box %0 : $P, $T
// %0 must be an uninitialized box of boxed existential container type $P
// $T must be the AST type for which the box was allocated





Deallocates a boxed existential container. The value inside the existential
buffer is not destroyed; either the box must be uninitialized, or the value
must have been projected out and destroyed beforehand. It is undefined behavior
if the concrete type $T is not the same type for which the box was
allocated with alloc_existential_box.






Blocks


project_block_storage

sil-instruction ::= 'project_block_storage' sil-operand ':' sil-type








init_block_storage_header

TODO Fill this in. The printing of this instruction looks incomplete on trunk currently.






Unchecked Conversions

These instructions implement type conversions which are not checked. These are
either user-level conversions that are always safe and do not need to be
checked, or implementation detail conversions that are unchecked for
performance or flexibility.


upcast

sil-instruction ::= 'upcast' sil-operand 'to' sil-type

%1 = upcast %0 : $D to $B
// $D and $B must be class types or metatypes, with B a superclass of D
// %1 will have type $B





Represents a conversion from a derived class instance or metatype to a
superclass, or from a base-class-constrained archetype to its base class.




address_to_pointer

sil-instruction ::= 'address_to_pointer' sil-operand 'to' sil-type

%1 = address_to_pointer %0 : $*T to $Builtin.RawPointer
// %0 must be of an address type $*T
// %1 will be of type Builtin.RawPointer





Creates a Builtin.RawPointer value corresponding to the address %0.
Converting the result pointer back to an address of the same type will give
an address equivalent to %0. It is undefined behavior to cast the
RawPointer to any address type other than its original address type or
any layout compatible types.




pointer_to_address

sil-instruction ::= 'pointer_to_address' sil-operand 'to' sil-type

%1 = pointer_to_address %0 : $Builtin.RawPointer to $*T
// %1 will be of type $*T





Creates an address value corresponding to the Builtin.RawPointer value
%0.  Converting a RawPointer back to an address of the same type as
its originating address_to_pointer instruction gives back an equivalent
address. It is undefined behavior to cast the RawPointer back to any type
other than its original address type or layout compatible types. It is
also undefined behavior to cast a RawPointer from a heap object to any
address type.




unchecked_ref_cast

sil-instruction ::= 'unchecked_ref_cast' sil-operand 'to' sil-type

%1 = unchecked_ref_cast %0 : $A to $B
// %0 must be an object of type $A
// $A must be a type with retainable pointer representation
// %1 will be of type $B
// $B must be a type with retainable pointer representation





Converts a heap object reference to another heap object reference
type. This conversion is unchecked, and it is undefined behavior if
the destination type is not a valid type for the heap object. The heap
object reference on either side of the cast may be a class
existential, and may be wrapped in one level of Optional.




unchecked_ref_cast_addr

sil-instruction ::= 'unchecked_ref_cast_addr'
                    sil-type 'in' sil-operand 'to'
                    sil-type 'in' sil-operand

unchecked_ref_cast_addr $A in %0 : $*A to $B in %1 : $*B
// %0 must be the address of an object of type $A
// $A must be a type with retainable pointer representation
// %1 must be the address of storage for an object of type $B
// $B must be a retainable pointer representation





Loads a heap object reference from an address and stores it at the
address of another uninitialized heap object reference. The loaded
reference is always taken, and the stored reference is
initialized. This conversion is unchecked, and it is undefined
behavior if the destination type is not a valid type for the heap
object. The heap object reference on either side of the cast may be a
class existential, and may be wrapped in one level of Optional.




unchecked_addr_cast

sil-instruction ::= 'unchecked_addr_cast' sil-operand 'to' sil-type

%1 = unchecked_addr_cast %0 : $*A to $*B
// %0 must be an address
// %1 will be of type $*B





Converts an address to a different address type. Using the resulting
address is undefined unless B is layout compatible with A. The
layout of A may be smaller than that of B as long as the lower
order bytes have identical layout.




unchecked_trivial_bit_cast

sil-instruction ::= 'unchecked_trivial_bit_cast' sil-operand 'to' sil-type

%1 = unchecked_trivial_bit_cast %0 : $Builtin.NativeObject to $Builtin.Word
// %0 must be an object.
// %1 must be an object with trivial type.





Bitcasts an object of type A to be of same sized or smaller type
B with the constraint that B must be trivial. This can be used
for bitcasting among trivial types, but more importantly is a one way
bitcast from non-trivial types to trivial types.




unchecked_bitwise_cast

sil-instruction ::= 'unchecked_bitwise_cast' sil-operand 'to' sil-type

%1 = unchecked_bitwise_cast %0 : $A to $B





Bitwise copies an object of type A into a new object of type B
of the same size or smaller.




ref_to_raw_pointer

sil-instruction ::= 'ref_to_raw_pointer' sil-operand 'to' sil-type

%1 = ref_to_raw_pointer %0 : $C to $Builtin.RawPointer
// $C must be a class type, or Builtin.ObjectPointer, or Builtin.ObjCPointer
// %1 will be of type $Builtin.RawPointer





Converts a heap object reference to a Builtin.RawPointer. The RawPointer
result can be cast back to the originating class type but does not have
ownership semantics. It is undefined behavior to cast a RawPointer from a
heap object reference to an address using pointer_to_address.




raw_pointer_to_ref

sil-instruction ::= 'raw_pointer_to_ref' sil-operand 'to' sil-type

%1 = raw_pointer_to_ref %0 : $Builtin.RawPointer to $C
// $C must be a class type, or Builtin.ObjectPointer, or Builtin.ObjCPointer
// %1 will be of type $C





Converts a Builtin.RawPointer back to a heap object reference. Casting
a heap object reference to Builtin.RawPointer back to the same type gives
an equivalent heap object reference (though the raw pointer has no ownership
semantics for the object on its own). It is undefined behavior to cast a
RawPointer to a type unrelated to the dynamic type of the heap object.
It is also undefined behavior to cast a RawPointer from an address to any
heap object type.




ref_to_unowned

sil-instruction ::= 'ref_to_unowned' sil-operand

%1 = unowned_to_ref %0 : T
// $T must be a reference type
// %1 will have type $@unowned T





Adds the @unowned qualifier to the type of a reference to a heap
object.  No runtime effect.




unowned_to_ref

sil-instruction ::= 'unowned_to_ref' sil-operand

%1 = unowned_to_ref %0 : $@unowned T
// $T must be a reference type
// %1 will have type $T





Strips the @unowned qualifier off the type of a reference to a
heap object.  No runtime effect.




ref_to_unmanaged

TODO




unmanaged_to_ref

TODO




convert_function

sil-instruction ::= 'convert_function' sil-operand 'to' sil-type

%1 = convert_function %0 : $T -> U to $T' -> U'
// %0 must be of a function type $T -> U ABI-compatible with $T' -> U'
//   (see below)
// %1 will be of type $T' -> U'





Performs a conversion of the function %0 to type T, which must be ABI-
compatible with the type of %0. Function types are ABI-compatible if their
input and result types are tuple types that, after destructuring, differ only
in the following ways:


	Corresponding tuple elements may add, remove, or change keyword names.
(a:Int, b:Float, UnicodeScalar) -> () and (x:Int, Float, z:UnicodeScalar) -> () are
ABI compatible.

	A class tuple element of the destination type may be a superclass or
subclass of the source type’s corresponding tuple element.



The function types may also differ in attributes, with the following
caveats:


	The convention attribute cannot be changed.

	A @noreturn function may be converted to a non-@noreturn
type and vice-versa.






thin_function_to_pointer

TODO




pointer_to_thin_function

TODO




ref_to_bridge_object

sil-instruction ::= 'ref_to_bridge_object' sil-operand, sil-operand

%2 = ref_to_bridge_object %0 : $C, %1 : $Builtin.Word
// %1 must be of reference type $C
// %2 will be of type Builtin.BridgeObject





Creates a Builtin.BridgeObject that references %0, with spare bits
in the pointer representation populated by bitwise-OR-ing in the value of
%1. It is undefined behavior if this bitwise OR operation affects the
reference identity of %0; in other words, after the following instruction
sequence:

%b = ref_to_bridge_object %r : $C, %w : $Builtin.Word
%r2 = bridge_object_to_ref %b : $Builtin.BridgeObject to $C





%r and %r2 must be equivalent. In particular, it is assumed that
retaining or releasing the BridgeObject is equivalent to retaining or
releasing the original reference, and that the above ref_to_bridge_object
/ bridge_object_to_ref round-trip can be folded away to a no-op.

On platforms with ObjC interop, there is additionally a platform-specific
bit in the pointer representation of a BridgeObject that is reserved to
indicate whether the referenced object has native Swift refcounting. It is
undefined behavior to set this bit when the first operand references an
Objective-C object.




bridge_object_to_ref

sil-instruction ::= 'bridge_object_to_ref' sil-operand 'to' sil-type

%1 = bridge_object_to_ref %0 : $Builtin.BridgeObject to $C
// $C must be a reference type
// %1 will be of type $C





Extracts the object reference from a Builtin.BridgeObject, masking out any
spare bits.




bridge_object_to_word

sil-instruction ::= 'bridge_object_to_word' sil-operand 'to' sil-type

%1 = bridge_object_to_word %0 : $Builtin.BridgeObject to $Builtin.Word
// %1 will be of type $Builtin.Word





Provides the bit pattern of a Builtin.BridgeObject as an integer.




thin_to_thick_function

sil-instruction ::= 'thin_to_thick_function' sil-operand 'to' sil-type

%1 = thin_to_thick_function %0 : $@convention(thin) T -> U to $T -> U
// %0 must be of a thin function type $@convention(thin) T -> U
// The destination type must be the corresponding thick function type
// %1 will be of type $T -> U





Converts a thin function value, that is, a bare function pointer with no
context information, into a thick function value with ignored context.
Applying the resulting thick function value is equivalent to applying the
original thin value. The thin_to_thick_function conversion may be
eliminated if the context is proven not to be needed.




thick_to_objc_metatype

sil-instruction ::= 'thick_to_objc_metatype' sil-operand 'to' sil-type

%1 = thick_to_objc_metatype %0 : $@thick T.metatype to $@objc_metatype T.metatype
// %0 must be of a thick metatype type $@thick T.metatype
// The destination type must be the corresponding Objective-C metatype type
// %1 will be of type $@objc_metatype T.metatype





Converts a thick metatype to an Objective-C class metatype. T must
be of class, class protocol, or class protocol composition type.




objc_to_thick_metatype

sil-instruction ::= 'objc_to_thick_metatype' sil-operand 'to' sil-type

%1 = objc_to_thick_metatype %0 : $@objc_metatype T.metatype to $@thick T.metatype
// %0 must be of an Objective-C metatype type $@objc_metatype T.metatype
// The destination type must be the corresponding thick metatype type
// %1 will be of type $@thick T.metatype





Converts an Objective-C class metatype to a thick metatype. T must
be of class, class protocol, or class protocol composition type.




objc_metatype_to_object

TODO




objc_existential_metatype_to_object

TODO




is_nonnull

sil-instruction ::= 'is_nonnull' sil-operand

%1 = is_nonnull %0 : $C
// %0 must be of reference or function type $C
// %1 will be of type Builtin.Int1





Checks whether a reference type value is null, returning 1 if
the value is not null, or 0 if it is null.  If the value is a function
type, it checks the function pointer (not the data pointer) for null.

This is not a sensical thing for SIL to represent given that reference
types are non-nullable, but makes sense at the machine level.  This is
a horrible hack that should go away someday.






Checked Conversions

Some user-level cast operations can fail and thus require runtime checking.

The unconditional_checked_cast_addr and unconditional_checked_cast
instructions performs an unconditional checked cast; it is a runtime failure
if the cast fails. The checked_cast_addr_br and checked_cast_br
terminator instruction performs a conditional checked cast; it branches to one
of two destinations based on whether the cast succeeds or not.


unconditional_checked_cast

sil-instruction ::= 'unconditional_checked_cast' sil-operand 'to' sil-type

%1 = unconditional_checked_cast %0 : $A to $B
%1 = unconditional_checked_cast %0 : $*A to $*B
// $A and $B must be both objects or both addresses
// %1 will be of type $B or $*B





Performs a checked scalar conversion, causing a runtime failure if the
conversion fails.




unconditional_checked_cast_addr

sil-instruction ::= 'unconditional_checked_cast_addr'
                     sil-cast-consumption-kind
                     sil-type 'in' sil-operand 'to'
                     sil-type 'in' sil-operand
sil-cast-consumption-kind ::= 'take_always'
sil-cast-consumption-kind ::= 'take_on_success'
sil-cast-consumption-kind ::= 'copy_on_success'

%1 = unconditional_checked_cast_addr take_on_success $A in %0 : $*@thick A to $B in $*@thick B
// $A and $B must be both addresses
// %1 will be of type $*B





Performs a checked indirect conversion, causing a runtime failure if the
conversion fails.






Runtime Failures


cond_fail

sil-instruction ::= 'cond_fail' sil-operand

cond_fail %0 : $Builtin.Int1
// %0 must be of type $Builtin.Int1





This instruction produces a runtime failure if the operand is one.
Execution proceeds normally if the operand is zero.






Terminators

These instructions terminate a basic block. Every basic block must end
with a terminator. Terminators may only appear as the final instruction of
a basic block.


unreachable

sil-terminator ::= 'unreachable'

unreachable





Indicates that control flow must not reach the end of the current basic block.
It is a dataflow error if an unreachable terminator is reachable from the entry
point of a function and is not immediately preceded by an apply of a
@noreturn function.




return

sil-terminator ::= 'return' sil-operand

return %0 : $T
// $T must be the return type of the current function





Exits the current function and returns control to the calling function. If
the current function was invoked with an apply instruction, the result
of that function will be the operand of this return instruction. If
the current function was invoked with a try_apply` instruction, control
resumes at the normal destination, and the value of the basic block argument
will be the operand of this ``return instruction.

return does not retain or release its operand or any other values.

A function must not contain more than one return instruction.




autorelease_return

sil-terminator ::= 'autorelease_return' sil-operand

autorelease_return %0 : $T
// $T must be the return type of the current function, which must be of
//   class type





Exits the current function and returns control to the calling function. The
result of the apply instruction that invoked the current function will be
the operand of this return instruction. The return value is autoreleased
into the active Objective-C autorelease pool using the “autoreleased return
value” optimization. The current function must use the @cc(objc_method)
calling convention.




throw

sil-terminator ::= 'throw' sil-operand

throw %0 : $T
// $T must be the error result type of the current function





Exits the current function and returns control to the calling
function. The current function must have an error result, and so the
function must have been invoked with a try_apply` instruction.
Control will resume in the error destination of that instruction, and
the basic block argument will be the operand of the ``throw.

throw does not retain or release its operand or any other values.

A function must not contain more than one throw instruction.




br

sil-terminator ::= 'br' sil-identifier
                     '(' (sil-operand (',' sil-operand)*)? ')'

br label (%0 : $A, %1 : $B, ...)
// `label` must refer to a basic block label within the current function
// %0, %1, etc. must be of the types of `label`'s arguments





Unconditionally transfers control from the current basic block to the block
labeled label, binding the given values to the arguments of the destination
basic block.




cond_br

sil-terminator ::= 'cond_br' sil-operand ','
                     sil-identifier '(' (sil-operand (',' sil-operand)*)? ')' ','
                     sil-identifier '(' (sil-operand (',' sil-operand)*)? ')'

cond_br %0 : $Builtin.Int1, true_label (%a : $A, %b : $B, ...), \
                               false_label (%x : $X, %y : $Y, ...)
// %0 must be of $Builtin.Int1 type
// `true_label` and `false_label` must refer to block labels within the
//   current function and must not be identical
// %a, %b, etc. must be of the types of `true_label`'s arguments
// %x, %y, etc. must be of the types of `false_label`'s arguments





Conditionally branches to true_label if %0 is equal to 1 or to
false_label if %0 is equal to 0, binding the corresponding set of
values to the the arguments of the chosen destination block.




switch_value

sil-terminator ::= 'switch_value' sil-operand
                     (',' sil-switch-value-case)*
                     (',' sil-switch-default)?
sil-switch-value-case ::= 'case' sil-value ':' sil-identifier
sil-switch-default ::= 'default' sil-identifier

switch_value %0 : $Builtin.Int<n>, case %1: label1, \
                                   case %2: label2, \
                                   ...,            \
                                   default labelN

// %0 must be a value of builtin integer type $Builtin.Int<n>
// `label1` through `labelN` must refer to block labels within the current
//   function
// FIXME: All destination labels currently must take no arguments





Conditionally branches to one of several destination basic blocks based on a
value of builtin integer or function type. If the operand value matches one of the case
values of the instruction, control is transferred to the corresponding basic
block. If there is a default basic block, control is transferred to it if
the value does not match any of the case values. It is undefined behavior
if the value does not match any cases and no default branch is provided.




select_value

sil-instruction ::= 'select_value' sil-operand sil-select-value-case*
                    (',' 'default' sil-value)?
                    ':' sil-type
sil-selct-value-case ::= 'case' sil-value ':' sil-value


%n = select_value %0 : $U, \
  case %c1: %r1,           \
  case %c2: %r2, /* ... */ \
  default %r3 : $T

// $U must be a builtin type. Only integers types are supported currently.
// c1, c2, etc must be of type $U
// %r1, %r2, %r3, etc. must have type $T
// %n has type $T





Selects one of the “case” or “default” operands based on the case of an
value. This is equivalent to a trivial switch_value branch sequence:

entry:
  switch_value %0 : $U,            \
    case %c1: bb1,           \
    case %c2: bb2, /* ... */ \
    default bb_default
bb1:
  br cont(%r1 : $T) // value for %c1
bb2:
  br cont(%r2 : $T) // value for %c2
bb_default:
  br cont(%r3 : $T) // value for default
cont(%n : $T):
  // use argument %n





but turns the control flow dependency into a data flow dependency.




switch_enum

sil-terminator ::= 'switch_enum' sil-operand
                     (',' sil-switch-enum-case)*
                     (',' sil-switch-default)?
sil-switch-enum-case ::= 'case' sil-decl-ref ':' sil-identifier

switch_enum %0 : $U, case #U.Foo: label1, \
                      case #U.Bar: label2, \
                      ...,                 \
                      default labelN

// %0 must be a value of enum type $U
// #U.Foo, #U.Bar, etc. must be 'case' declarations inside $U
// `label1` through `labelN` must refer to block labels within the current
//   function
// label1 must take either no basic block arguments, or a single argument
//   of the type of #U.Foo's data
// label2 must take either no basic block arguments, or a single argument
//   of the type of #U.Bar's data, etc.
// labelN must take no basic block arguments





Conditionally branches to one of several destination basic blocks based on the
discriminator in a loadable enum value. Unlike switch_int,
switch_enum requires coverage of the operand type: If the enum type
is resilient, the default branch is required; if the enum type is
fragile, the default branch is required unless a destination is assigned to
every case of the enum. The destination basic block for a case may
take an argument of the corresponding enum case‘s data type (or of the
address type, if the operand is an address). If the branch is taken, the
destination’s argument will be bound to the associated data inside the
original enum value.  For example:

enum Foo {
  case Nothing
  case OneInt(Int)
  case TwoInts(Int, Int)
}

sil @sum_of_foo : $Foo -> Int {
entry(%x : $Foo):
  switch_enum %x : $Foo,       \
    case #Foo.Nothing: nothing, \
    case #Foo.OneInt:  one_int, \
    case #Foo.TwoInts: two_ints

nothing:
  %zero = integer_literal 0 : $Int
  return %zero : $Int

one_int(%y : $Int):
  return %y : $Int

two_ints(%ab : $(Int, Int)):
  %a = tuple_extract %ab : $(Int, Int), 0
  %b = tuple_extract %ab : $(Int, Int), 1
  %add = function_ref @add : $(Int, Int) -> Int
  %result = apply %add(%a, %b) : $(Int, Int) -> Int
  return %result : $Int
}





On a path dominated by a destination block of switch_enum, copying or
destroying the basic block argument has equivalent reference counting semantics
to copying or destroying the switch_enum operand:

  // This retain_value...
  retain_value %e1 : $Enum
  switch_enum %e1, case #Enum.A: a, case #Enum.B: b
a(%a : $A):
  // ...is balanced by this release_value
  release_value %a
b(%b : $B):
  // ...and this one
  release_value %b








switch_enum_addr

sil-terminator ::= 'switch_enum_addr' sil-operand
                     (',' sil-switch-enum-case)*
                     (',' sil-switch-default)?

switch_enum_addr %0 : $*U, case #U.Foo: label1, \
                                        case #U.Bar: label2, \
                                        ...,                 \
                                        default labelN

// %0 must be the address of an enum type $*U
// #U.Foo, #U.Bar, etc. must be cases of $U
// `label1` through `labelN` must refer to block labels within the current
//   function
// The destinations must take no basic block arguments





Conditionally branches to one of several destination basic blocks based on
the discriminator in the enum value referenced by the address operand.

Unlike switch_int, switch_enum requires coverage of the operand type:
If the enum type is resilient, the default branch is required; if the
enum type is fragile, the default branch is required unless a
destination is assigned to every case of the enum.
Unlike switch_enum, the payload value is not passed to the destination
basic blocks; it must be projected out separately with unchecked_take_enum_data_addr.




dynamic_method_br

sil-terminator ::= 'dynamic_method_br' sil-operand ',' sil-decl-ref
                     ',' sil-identifier ',' sil-identifier

dynamic_method_br %0 : $P, #X.method!1, bb1, bb2
// %0 must be of protocol type
// #X.method!1 must be a reference to an @objc method of any class
// or protocol type





Looks up the implementation of an Objective-C method with the same
selector as the named method for the dynamic type of the value inside
an existential container. The “self” operand of the result function
value is represented using an opaque type, the value for which must be
projected out as a value of type Builtin.ObjCPointer.

If the operand is determined to have the named method, this
instruction branches to bb1, passing it the uncurried function
corresponding to the method found. If the operand does not have the
named method, this instruction branches to bb2.




checked_cast_br

sil-terminator ::= 'checked_cast_br' sil-checked-cast-exact?
                    sil-operand 'to' sil-type ','
                    sil-identifier ',' sil-identifier
sil-checked-cast-exact ::= '[' 'exact' ']'

checked_cast_br %0 : $A to $B, bb1, bb2
checked_cast_br %0 : $*A to $*B, bb1, bb2
checked_cast_br [exact] %0 : $A to $A, bb1, bb2
// $A and $B must be both object types or both address types
// bb1 must take a single argument of type $B or $*B
// bb2 must take no arguments





Performs a checked scalar conversion from $A to $B. If the conversion
succeeds, control is transferred to bb1, and the result of the cast is
passed into bb1 as an argument. If the conversion fails, control is
transferred to bb2.

An exact cast checks whether the dynamic type is exactly the target
type, not any possible subtype of it.  The source and target types
must be class types.




checked_cast_addr_br

sil-terminator ::= 'checked_cast_addr_br'
                    sil-cast-consumption-kind
                    sil-type 'in' sil-operand 'to'
                    sil-stype 'in' sil-operand ','
                    sil-identifier ',' sil-identifier
sil-cast-consumption-kind ::= 'take_always'
sil-cast-consumption-kind ::= 'take_on_success'
sil-cast-consumption-kind ::= 'copy_on_success'

checked_cast_addr_br take_always $A in %0 : $*@thick A to $B in %2 : $*@thick B, bb1, bb2
// $A and $B must be both address types
// bb1 must take a single argument of type $*B
// bb2 must take no arguments





Performs a checked indirect conversion from $A to $B. If the
conversion succeeds, control is transferred to bb1, and the result of the
cast is left in the destination. If the conversion fails, control is
transferred to bb2.




try_apply

sil-terminator ::= 'try_apply' sil-value
                      sil-apply-substitution-list?
                      '(' (sil-value (',' sil-value)*)? ')'
                      ':' sil-type
  'normal' sil-identifier, 'error' sil-identifier

try_apply %0(%1, %2, ...) : $(A, B, ...) -> (R, @error E),
  normal bb1, error bb2
bb1(%3 : R):
bb2(%4 : E):

// Note that the type of the callee '%0' is specified *after* the arguments
// %0 must be of a concrete function type $(A, B, ...) -> (R, @error E)
// %1, %2, etc. must be of the argument types $A, $B, etc.





Transfers control to the function specified by %0, passing it the
given arguments.  When %0 returns, control resumes in either the
normal destination (if it returns with return) or the error
destination (if it returns with throw).

%0 must have a function type with an error result.

The rules on generic substitutions are identical to those of apply.






Assertion configuration

To be able to support disabling assertions at compile time there is a builtin
assertion_configuration function. A call to this function can be replaced at
compile time by a constant or can stay opaque.

All calls to the assert_configuration function are replaced by the constant
propagation pass to the appropriate constant depending on compile time settings.
Subsequent passes remove dependent unwanted control flow. Using this mechanism
we support conditionally enabling/disabling of code in SIL libraries depending
on the assertion configuration selected when the library is linked into user
code.

There are three assertion configurations: Debug (0), Release (1) and
DisableReplacement (-1).

The optimization flag or a special assert configuration flag determines the
value. Depending on the configuration value assertions in the standard library
will be executed or not.

The standard library uses this builtin to define an assert that can be
disabled at compile time.

func assert(...) {
  if (Int32(Builtin.assert_configuration()) == 0) {
    _fatal_error_message(message, ...)
  }
}





The assert_configuration function application is serialized when we build
the standard library (we recognize the -parse-stdlib option and don’t do the
constant replacement but leave the function application to be serialized to
sil).

The compiler flag that influences the value of the assert_configuration
funtion application is the optimization flag: at -Onone` the application will
be replaced by ``Debug at higher optimization levels the instruction will be
replaced by Release. Optionally, the value to use for replacement can be
specified with the -AssertConf flag which overwrites the value selected by
the optimization flag (possible values are Debug, Release,
DisableReplacement).

If the call to the assert_configuration function stays opaque until IRGen,
IRGen will replace the application by the constant representing Debug mode (0).
This happens we can build the standard library .dylib. The generate sil will
retain the function call but the generated .dylib will contain code with
assertions enabled.









          

      

      

    

  

    
      
          
            
  
Type Checker Design and Implementation


Purpose

This document describes the design and implementation of the Swift
type checker. It is intended for developers who wish to modify,
extend, or improve on the type checker, or simply to understand in
greater depth how the Swift type system works. Familiarity with the
Swift programming language is assumed.




Approach

The Swift language and its type system incorporate a number of popular
language features, including object-oriented programming via classes,
function and operator overloading, subtyping, and constrained
parametric polymorphism. Swift makes extensive use of type inference,
allowing one to omit the types of many variables and expressions. For
example:

func round(x: Double) -> Int { /* ... */ }
var pi: Double = 3.14159
var three = round(pi) // 'three' has type 'Int'

func identity<T>(x: T) -> T { return x }
var eFloat: Float = -identity(2.71828)  // numeric literal gets type 'Float'





Swift’s type inference allows type information to flow in two
directions. As in most mainstream languages, type information can flow
from the leaves of the expression tree (e.g., the expression ‘pi’,
which refers to a double) up to the root (the type of the variable
‘three’). However, Swift also allows type information to flow from the
context (e.g., the fixed type of the variable ‘eFloat’) at the root of
the expression tree down to the leaves (the type of the numeric
literal 2.71828). This bi-directional type inference is common in
languages that use ML-like type systems, but is not present in
mainstream languages like C++, Java, C#, or Objective-C.

Swift implements bi-directional type inference using a
constraint-based type checker that is reminiscent of the classical
Hindley-Milner type inference algorithm. The use of a constraint
system allows a straightforward, general presentation of language
semantics that is decoupled from the actual implementation of the
solver. It is expected that the constraints themselves will be
relatively stable, while the solver will evolve over time to improve
performance and diagnostics.

The Swift language contains a number of features not part of the
Hindley-Milner type system, including constrained polymorphic types
and function overloading, which complicate the presentation and
implementation somewhat. On the other hand, Swift limits the scope of
type inference to a single expression or statement, for purely
practical reasons: we expect that we can provide better performance
and vastly better diagnostics when the problem is limited in scope.

Type checking proceeds in three main stages:


	Constraint Generation

	Given an input expression and (possibly) additional contextual
information, generate a set of type constraints that describes the
relationships among the types of the various subexpressions. The
generated constraints may contain unknown types, represented by type
variables, which will be determined by the solver.

	Constraint Solving

	Solve the system of constraints by assigning concrete types to each
of the type variables in the constraint system. The constraint
solver should provide the most specific solution possible among
different alternatives.

	Solution Application

	Given the input expression, the set of type constraints generated
from that expression, and the set of assignments of concrete types
to each of the type variables, produce a well-typed expression that
makes all implicit conversions (and other transformations) explicit
and resolves all unknown types and overloads. This step cannot fail.



The following sections describe these three stages of type checking,
as well as matters of performance and diagnostics.




Constraints

A constraint system consists of a set of type constraints. Each type
constraint either places a requirement on a single type (e.g., it is
an integer literal type) or relates two types (e.g., one is a subtype
of the other). The types described in constraints can be any type in
the Swift type system including, e.g., builtin types, tuple types,
function types, enum/struct/class types, protocol types, and generic
types. Additionally, a type can be a type variable T (which are
typically numbered, T0, T1, T2, etc., and are introduced
as needed). Type variables can be used in place of any other type,
e.g., a tuple type (T0, Int, (T0) -> Int) involving the type
variable T0.

There are a number of different kinds of constraints used to describe
the Swift type system:


	Equality

	An equality constraint requires two types to be identical. For
example, the constraint T0 == T1 effectively ensures that T0 and
T1 get the same concrete type binding. There are two different
flavors of equality constraints:



	Exact equality constraints, or  “binding”, written T0 := X
for some type variable T0 and  type X, which requires
that T0 be exactly identical to X;

	Equality constraints, written X == Y for types X and
Y, which require X and Y to have the same type,
ignoring lvalue types in the process. For example, the
constraint T0 == X would be satisfied by assigning T0
the type X and by assigning T0 the type @lvalue X.








	Subtyping

	A subtype constraint requires the first type to be equivalent to or
a subtype of the second. For example, a class type Dog is a
subtype of a class type Animal if Dog inherits from
Animal either directly or indirectly. Subtyping constraints are
written X < Y.

	Conversion

	A conversion constraint requires that the first type be convertible
to the second, which includes subtyping and equality. Additionally,
it allows a user-defined conversion function to be
called. Conversion constraints are written X <c Y, read as
`X can be converted to Y`.

	Construction

	A construction constraint, written X <C Y requires that the
second type be a nominal type with a constructor that accepts a
value of the first type. For example, the constraint``Int <C
String`` is satisfiable because String has a constructor that
accepts an Int.

	Member

	A member constraint X[.name] == Y specifies that the first type
(X) have a member (or an overloaded set of members) with the
given name, and that the type of that member be bound to the second
type (Y).  There are two flavors of member constraint: value
member constraints, which refer to the member in an expression
context, and type member constraints, which refer to the member in a
type context (and therefore can only refer to types).

	Conformance

	A conformance constraint X conforms to Y specifies that the
first type (‘’X’‘) must conform to the protocol Y.

	Checked cast

	A constraint describing a checked cast from the first type to the
second, i.e., for ‘’x as T’‘.

	Applicable function

	An applicable function requires that both types are function types
with the same input and output types. It is used when the function
type on the left-hand side is being split into its input and output
types for function application purposes. Note, that it does not
require the type attributes to match.

	Overload binding

	An overload binding constraint binds a type variable by selecting a
particular choice from an overload set. Multiple overloads are
represented by a disjunction constraint.

	Conjunction

	A constraint that is the conjunction of two or more other
constraints. Typically used within a disjunction.

	Disjunction

	A constraint that is the disjunction of two or more
constraints. Disjunctions are used to model different decisions that
the solver could make, i.e., the sets of overloaded functions from
which the solver could choose, or different potential conversions,
each of which might resolve in a (different) solution.

	Archetype

	An archetype constraint requires that the constrained type be bound
to an archetype. This is a very specific kind of constraint that is
only used for calls to operators in protocols.

	Class

	A class constraint requires that the constrained type be bound to a
class type.

	Self object of protocol

	An internal-use-only constraint that describes the conformance of a
Self type to a protocol. It is similar to a conformance
constraint but “looser” because it allows a protocol type to be the
self object of its own protocol (even when an existential type would
not conform to its own protocol).

	Dynamic lookup value

	A constraint that requires that the constrained type be
DynamicLookup or an lvalue thereof.




Constraint Generation

The process of constraint generation produces a constraint system
that relates the types of the various subexpressions within an
expression. Programmatically, constraint generation walks an
expression from the leaves up to the root, assigning a type (which
often involves type variables) to each subexpression as it goes.

Constraint generation is driven by the syntax of the
expression, and each different kind of expression—function
application, member access, etc.—generates a specific set of
constraints. Here, we enumerate the primary expression kinds in the
language and describe the type assigned to the expression and the
constraints generated from such as expression. We use T(a) to
refer to the type assigned to the subexpression a. The constraints
and types generated from the primary expression kinds are:


	Declaration reference

	An expression that refers to a declaration x is assigned the
type of a reference to x. For example, if x is declared as
var x: Int, the expression x is assigned the type
@lvalue Int. No constraints are generated.

When a name refers to a set of overloaded declarations, the
selection of the appropriate declaration is handled by the
solver. This particular issue is discussed in the Overloading
section. Additionally, when the name refers to a generic function or
a generic type, the declaration reference may introduce new type
variables; see the Polymorphic Types section for more information.



	Member reference

	A member reference expression a.b is assigned the type T0
for a fresh type variable T0. In addition, the expression
generates the value member constraint T(a).b == T0.  Member
references may end up resolving to a member of a nominal type or an
element of a tuple; in the latter case, the name (b) may
either be an identifier or a positional argument (e.g., 1).

Note that resolution of the member constraint can refer to a set of
overloaded declarations; this is described further in the
Overloading section.



	Unresolved member reference

	An unresolved member reference .name refers to a member of a
enum type. The enum type is assumed to have a fresh variable
type T0 (since that type can only be known from context), and a
value member constraint T0.name == T1, for fresh type variable
T1, captures the fact that it has a member named name with
some as-yet-unknown type T1. The type of the unresolved member
reference is T1, the type of the member. When the unresolved
member reference is actually a call .name(x), the function
application is folded into the constraints generated by the
unresolved member reference.

Note that the constraint system above actually has insufficient
information to determine the type T0 without additional
contextual information. The Overloading section describes how the
overload-selection mechanism is used to resolve this problem.



	Function application

	A function application a(b) generates two constraints. First,
the applicable function constraint T0 -> T1 ==Fn T(a) (for fresh
type variables T0 and T1) captures the rvalue-to-lvalue
conversion applied on the function (a) and decomposes the
function type into its argument and result types. Second, the
conversion constraint T(b) <c T0 captures the requirement that
the actual argument type (b) be convertible to the argument type
of the function. Finally, the expression is given the type T1,
i.e., the result type of the function.

	Construction

	A type construction``A(b)``, where A refers to a type, generates
a construction constraint T(b) <C A, which requires that A
have a constructor that accepts b. The type of the expression is
A.

Note that construction and function application use the same
syntax. Here, the constraint generator performs a shallow analysis
of the type of the “function” argument (A or a, in the
exposition above); if it obviously has metatype type, the expression
is considered a coercion/construction rather than a function
application. This particular area of the language needs more work.



	Subscripting

	A subscript operation a[b] is similar to function application. A
value member constraint T(a).subscript == T0 -> T1 treats the
subscript as a function from the key type to the value type,
represented by fresh type variables T0 and T1,
respectively. The constraint T(b) <c T0 requires the key
argument to be convertible to the key type, and the type of the
subscript operation is T1.

	Literals

	A literal expression, such as 17, 1.5, or "Hello,
world!, is assigned a fresh type variable T0. Additionally, a
literal constraint is placed on that type variable depending on the
kind of literal, e.g., “T0 is an integer literal.”

	Closures

	A closure is assigned a function type based on the parameters and
return type. When a parameter has no specified type or is positional
($1, $2, etc.), it is assigned a fresh type variable to
capture the type. Similarly, if the return type is omitted, it is
assigned a fresh type variable.

When the body of the closure is a single expression, that expression
participates in the type checking of its enclosing expression
directly. Otherwise, the body of the closure is separately
type-checked once the type checking of its context has computed a
complete function type.



	Array allocation

	An array allocation new A[s] is assigned the type A[]. The
type checker (separately) checks that T(s) is an array bound
type.

	Address of

	An address-of expression &a always returns an @inout
type. Therefore, it is assigned the type @inout T0 for a fresh
type variable T0. The subtyping constraint @inout T0 < @lvalue
T(a) captures the requirement that input expression be an lvalue
of some type.

	Ternary operator

	A ternary operator``x ? y : z`` generates a number of
constraints. The type T(x) must conform to the LogicValue
protocol to determine which branch is taken. Then, a new type
variable T0 is introduced to capture the result type, and the
constraints T(y) <c T0 and T(z) <c T0 capture the need for
both branches of the ternary operator to convert to a common type.



There are a number of other expression kinds within the language; see
the constraint generator for their mapping to constraints.


Overloading

Overloading is the process of giving multiple, different definitions
to the same name. For example, we might overload a negate function
to work on both Int and Double types, e.g.:

func negate(x: Int) -> Int { return -x }
func negate(x: Double) -> Double { return -x }





Given that there are two definitions of negate, what is the type
of the declaration reference expression negate? If one selects the
first overload, the type is (Int) -> Int; for the second overload,
the type is (Double) -> Double. However, constraint generation
needs to assign some specific type to the expression, so that its
parent expressions can refer to that type.

Overloading in the type checker is modeled by introducing a fresh type
variable (call it T0) for the type of the reference to an
overloaded declaration. Then, a disjunction constraint is introduced,
in which each term binds that type variable (via an exact equality
constraint) to the type produced by one of the overloads in the
overload set. In our negate example, the disjunction is
T0 := (Int) -> Int or T0 := (Double) -> Double. The constraint
solver, discussed in the later section on Constraint Solving,
explores both possible bindings, and the overloaded reference resolves
to whichever binding results in a solution that satisfies all
constraints [1].

Overloading can be introduced both by expressions that refer to sets
of overloaded declarations and by member constraints that end up
resolving to a set of overloaded declarations. One particularly
interesting case is the unresolved member reference, e.g.,
.name. As noted in the prior section, this generates the
constraint T0.name == T1, where T0 is a fresh type variable
that will be bound to the enum type and T1 is a fresh type
variable that will be bound to the type of the selected member. The
issue noted in the prior section is that this constraint does not give
the solver enough information to determine T0 without
guesswork. However, we note that the type of a enum member actually
has a regular structure. For example, consider the Optional type:

enum Optional<T> {
  case None
  case Some(T)
}





The type of Optional<T>.Vone is Optional<T>, while the type of
Optional<T>.Some is (T) -> Optional<T>. In fact, the
type of a enum element can have one of two forms: it can be T0,
for a enum element that has no extra data, or it can be T2 -> T0,
where T2 is the data associated with the enum element.  For the
latter case, the actual arguments are parsed as part of the unresolved
member reference, so that a function application constraint describes
their conversion to the input tyoe T2.




Polymorphic Types

The Swift language includes generics, a system of constrained
parameter polymorphism that enables polymorphic types and
functions. For example, one can implement a min function as,
e.g.,:

func min<T : Comparable>(x: T, y: T) -> T {
  if y < x { return y }
  return x
}





Here, T is a generic parameter that can be replaced with any
concrete type, so long as that type conforms to the protocol
Comparable. The type of min is (internally) written as <T :
Comparable> (x: T, y: T) -> T, which can be read as “for all T,
where T conforms to Comparable, the type of the function is
(x: T, y: T) -> T. Different uses of the min function may
have different bindings for the generic parameter``T``.

When the constraint generator encounters a reference to a generic
function, it immediately replaces each of the generic parameters within
the function type with a fresh type variable, introduces constraints
on that type variable to match the constraints listed in the generic
function, and produces a monomorphic function type based on the
newly-generated type variables. For example, the first occurrence of
the declaration reference expression min would result in a type
(x : T0, y : T0) -> T0, where T0 is a fresh type variable, as
well as the subtype constraint T0 < Comparable, which expresses
protocol conformance. The next occurrence of the declaration reference
expression min would produce the type (x : T1, y : T1) -> T1,
where T1 is a fresh type variable (and therefore distinct from
T0), and so on. This replacement process is referred to as
“opening” the generic function type, and is a fairly simple (but
effective) way to model the use of polymorphic functions within the
constraint system without complicating the solver. Note that this
immediate opening of generic function types is only valid because
Swift does not support first-class polymorphic functions, e.g., one
cannot declare a variable of type <T> T -> T.

Uses of generic types are also immediately opened by the constraint
solver. For example, consider the following generic dictionary type:

class Dictionary<Key : Hashable, Value> {
  // ...
}





When the constraint solver encounters the expression ``
Dictionary()``, it opens up the type Dictionary—which has not
been provided with any specific generic arguments—to the type
Dictionary<T0, T1>, for fresh type variables T0 and T1,
and introduces the constraint T0 conforms to Hashable. This allows
the actual key and value types of the dictionary to be determined by
the context of the expression. As noted above for first-class
polymorphic functions, this immediate opening is valid because an
unbound generic type, i.e., one that does not have specified generic
arguments, cannot be used except where the generic arguments can be
inferred.








Constraint Solving

The primary purpose of the constraint solver is to take a given set of
constraints and determine the most specific type binding for each of the type
variables in the constraint system. As part of this determination, the
constraint solver also resolves overloaded declaration references by
selecting one of the overloads.

Solving the constraint systems generated by the Swift language can, in
the worst case, require exponential time. Even the classic
Hindley-Milner type inference algorithm requires exponential time, and
the Swift type system introduces additional complications, especially
overload resolution. However, the problem size for any particular
expression is still fairly small, and the constraint solver can employ
a number of tricks to improve performance. The Performance section
describes some tricks that have been implemented or are planned, and
it is expected that the solver will be extended with additional tricks
going forward.

This section will focus on the basic ideas behind the design of the
solver, as well as the type rules that it applies.


Simplification

The constraint generation process introduces a number of constraints
that can be immediately solved, either directly (because the solution
is obvious and trivial) or by breaking the constraint down into a
number of smaller constraints. This process, referred to as
simplification, canonicalizes a constraint system for later stages
of constraint solving. It is also re-invoked each time the constraint
solver makes a guess (at resolving an overload or binding a type
variable, for example), because each such guess often leads to other
simplifications. When all type variables and overloads have been
resolved, simplification terminates the constraint solving process
either by detecting a trivial constraint that is not satisfied (hence,
this is not a proper solution) or by reducing the set of constraints
down to only simple constraints that are trivially satisfied.

The simplification process breaks down constraints into simpler
constraints, and each different kind of constraint is handled by
different rules based on the Swift type system. The constraints fall
intofive categories: relational constraints, member constraints,
type properties, conjunctions, and disjunctions. Only the first three
kinds of constraints have interesting simplification rules, and are
discussed in the following sections.


Relational Constraints

Relational constraints describe a relationship between two types. This
category covers the equality, subtyping, and conversion constraints,
and provides the most common simplifications. The simplification of
relationship constraints proceeds by comparing the structure of the
two types and applying the typing rules of the Swift language to
generate additional constraints. For example, if the constraint is a
conversion constraint:

A -> B <c C -> D





then both types are function types, and we can break down this
constraint into two smaller constraints C < A and B < D by
applying the conversion rule for function types. Similarly, one can
destroy all of the various type constructors—tuple types, generic
type specializations, lvalue types, etc.—to produce simpler
requirements, based on the type rules of the language [2].

Relational constraints involving a type variable on one or both sides
generally cannot be solved directly. Rather, these constraints inform
the solving process later by providing possible type bindings,
described in the Type Variable Bindings section. The exception is
an equality constraint between two type variables, e.g., T0 ==
T1. These constraints are simplified by unifying the equivalence
classes of T0 and T1 (using a basic union-find algorithm),
such that the solver need only determine a binding for one of the type
variables (and the other gets the same binding).




Member Constraints

Member constraints specify that a certain type has a member of a given
name and provide a binding for the type of that member. A member
constraint A.member == B can be simplified when the type of A
is determined to be a nominal or tuple type, in which case name lookup
can resolve the member name to an actual declaration. That declaration
has some type C, so the member constraint is simplified to the
exact equality constraint``B := C``.

The member name may refer to a set of overloaded declarations. In this
case, the type C is a fresh type variable (call it T0). A
disjunction constraint is introduced, each term of which new overload
set binds a different declaration’s type to T0, as described in
the section on Overloading.

The kind of member constraint—type or value—also affects the
declaration type C. A type constraint can only refer to member
types, and C will be the declared type of the named member. A
value constraint, on the other hand, can refer to either a type or a
value, and C is the type of a reference to that entity. For a
reference to a type, C will be a metatype of the declared type.






Strategies

The basic approach to constraint solving is to simplify the
constraints until they can no longer be simplified, then produce (and
check) educated guesses about which declaration from an overload set
should be selected or what concrete type should be bound to a given
type variable. Each guess is tested as an assumption, possibly with
other guesses, until the solver either arrives at a solution or
concludes that the guess was incorrect.

Within the implementation, each guess is modeled as an assumption
within a new solver scope. The solver scope inherits all of the
constraints, overload selections, and type variable bindings of its
parent solver scope, then adds one more guess. As such, the solution
space explored by the solver can be viewed as a tree, where the
top-most node is the constraint system generated directly from the
expression. The leaves of the tree are either solutions to the
type-checking problem (where all constraints have been simplified
away) or represent sets of assumptions that do not lead to a solution.

The following sections describe the techniques used by the solver to
produce derived constraint systems that explore the solution space.


Overload Selection

Overload selection is the simplest way to make an assumption. For an
overload set that introduced a disjunction constraint
T0 := A1 or T0 := A2 or ... or T0 := AN into the constraint
system, each term in the disjunction will be visited separately. Each
solver state binds the type variable T0 and explores
whether the selected overload leads to a suitable solution.




Type Variable Bindings

A second way in which the solver makes assumptions is to guess at the
concrete type to which a given type variable should be bound. That
type binding is then introduced in a new, derived constraint system to
determine if the binding is feasible.

The solver does not conjure concrete type bindings from nothing, nor
does it perform an exhaustive search. Rather, it uses the constraints
placed on that type variable to produce potential candidate
types. There are several strategies employed by the solver.


Meets and Joins

A given type variable T0 often has relational constraints
placed on it that relate it to concrete types, e.g., T0 <c Int or
Float <c T0. In these cases, we can use the concrete types as a
starting point to make educated guesses for the type T0.

To determine an appropriate guess, the relational constraints placed
on the type variable are categorized. Given a relational constraint of the form
T0 <? A (where <? is one of <, <t, or <c), where
A is some concrete type, A is said to be  “above”
T0. Similarly, given a constraint of the form B <? T0 for a
concrete type B, B is said to be “below” T0. The
above/below terminologies comes from a visualization of the lattice of
types formed by the conversion relationship, e.g., there is an edge
A -> B in the latter if A is convertible to B. B would
therefore be higher in the lattice than A, and the topmost element
of the lattice is the element to which all types can be converted,
protocol<> (often called “top”).

The concrete types “above” and “below” a given type variable provide
bounds on the possible concrete types that can be assigned to that
type variable. The solver computes [3] the join of the types “below”
the type variable, i.e., the most specific (lowest) type to which all
of the types “below” can be converted, and uses that join as a
starting guess.




Supertype Fallback

The join of the “below” types computed as a starting point may be too
specific, due to constraints that involve the type variable but
weren’t simple enough to consider as part of the join. To cope with
such cases, if no solution can be found with the join of the “below”
types, the solver creates a new set of derived constraint systems with
weaker assumptions, corresponding to each of the types that the join
is directly convertible to. For example, if the join was some class
Derived, the supertype fallback would then try the class Base
from which Derived directly inherits. This fallback process
continues until the types produced are no longer convertible to the
meet of types “above” the type variable, i.e., the least specific
(highest) type from which all of the types “above” the type variable
can be converted [4].




Default Literal Types

If a type variable is bound by a conformance constraint to one of the
literal protocols, “T0 conforms to IntegerLiteralConvertible”,
then the constraint solver will guess that the type variable can be
bound to the default literal type for that protocol. For example,
T0 would get the default integer literal type Int, allowing
one to type-check expressions with too little type information to
determine the types of these literals, e.g., -1.








Comparing Solutions

The solver explores a potentially large solution space, and it is
possible that it will find multiple solutions to the constraint system
as given. Such cases are not necessarily ambiguities, because the
solver can then compare the solutions to to determine whether one of
the solutions is better than all of the others. To do so, it computes
a “score” for each solution based on a number of factors:


	How many user-defined conversions were applied.

	How many non-trivial function conversions were applied.

	How many literals were given “non-default” types.



Solutions with smaller scores are considered better solutions. When
two solutions have the same score, the type variables and overload
choices of the two systems are compared to produce a relative score:


	If the two solutions have selected different type variable bindings
for a type variable where a “more specific” type variable is a
better match, and one of the type variable bindings is a subtype of
the other, the solution with the subtype earns +1.

	If an overload set has different selected overloads in the two
soluions, the overloads are compared. If the type of the
overload picked in one solution is a subtype of the type of
the overload picked in the other solution, then first solution earns
+1.



The solution with the greater relative score is considered to be
better than the other solution.






Solution Application

Once the solver has produced a solution to the constraint system, that
solution must be applied to the original expression to produce a fully
type-checked expression that makes all implicit conversions and
resolved overloads explicit. This application process walks the
expression tree from the leaves to the root, rewriting each expression
node based on the kind of expression:


	Declaration references

	Declaration references are rewritten with the precise type of the
declaraion as referenced. For overloaded declaration references, the
Overload*Expr node is replaced with a simple declaration
reference expression. For references to polymorphic functions or
members of generic types, a SpecializeExpr node is introduced to
provide substitutions for all of the generic parameters.

	Member references

	References to members are similar to declaration
references. However, they have the added constraint that the base
expression needs to be a reference. Therefore, an rvalue of
non-reference type will be materialized to produce the necessary
reference.

	Literals

	Literals are converted to the appropriate literal type, which
typically involves introducing calls to the witnesses for the
appropriate literal protocols.

	Closures

	Since the closure has acquired a complete function type,
the body of the closure is type-checked with that
complete function type.



The solution application step cannot fail for any type checking rule
modeled by the constraint system. However, there are some failures
that are intentionally left to the solution application phase, such as
a postfix ‘!’ applied to a non-optional type.


Locators

During constraint generation and solving, numerous constraints are
created, broken apart, and solved. During constraint application as
well as during diagnostics emission, it is important to track the
relationship between the constraints and the actual expressions from
which they originally came. For example, consider the following type
checking problem:

struct X {
  // user-defined conversions
  func [conversion] __conversion () -> String { /* ... */ }
  func [conversion] __conversion () -> Int { /* ... */ }
}

func f(i : Int, s : String) { }

var x : X
f(10.5, x)





This constraint system generates the constraints “T(f) ==Fn T0
-> T1” (for fresh variables T0 and T1), “(T2, X) <c
T0” (for fresh variable T2) and “T2 conforms to
``FloatLiteralConvertible”. As part of the solution, after T0 is
replaced with (i : Int, s : String), the second of
these constraints is broken down into “T2 <c ``Int” and “X <c
String”. These two constraints are interesting for different
reasons: the first will fail, because Int does not conform to
FloatLiteralConvertible. The second will succeed by selecting one
of the (overloaded) conversion functions.

In both of these cases, we need to map the actual constraint of
interest back to the expressions they refer to. In the first case, we
want to report not only that the failure occurred because Int is
not FloatLiteralConvertible, but we also want to point out where
the Int type actually came from, i.e., in the parameter. In the
second case, we want to determine which of the overloaded conversion
functions was selected to perform the conversion, so that conversion
function can be called by constraint application if all else succeeds.

Locators address both issues by tracking the location and derivation
of constraints. Each locator is anchored at a specific expression,
i.e., the function application f(10.5, x), and contains a path of
zero or more derivation steps from that anchor. For example, the
“T(f) ==Fn T0 -> T1” constraint has a locator that is
anchored at the function application and a path with the “apply
function” derivation step, meaning that this is the function being
applied. Similarly, the “(T2, X) <c T0 constraint has a
locator anchored at the function application and a path with the
“apply argument” derivation step, meaning that this is the argument
to the function.

When constraints are simplified, the resulting constraints have
locators with longer paths. For example, when a conversion constraint between two
tuples is simplified conversion constraints between the corresponding
tuple elements, the resulting locators refer to specific elements. For
example, the T2 <c Int constraint will be anchored at the function
application (still), and have two derivation steps in its path: the
“apply function” derivation step from its parent constraint followed
by the “tuple element 0” constraint that refers to this specific tuple
element. Similarly, the X <c String constraint will have the same
locator, but with “tuple element 1” rather than “tuple element 0”. The
ConstraintLocator type in the constraint solver has a number of
different derivation step kinds (called “path elements” in the source)
that describe the various ways in which larger constraints can be
broken down into smaller ones.


Overload Choices

Whenever the solver creates a new overload set, that overload set is
associated with a particular locator. Continuing the example from the
parent section, the solver will create an overload set containing the
two user-defined conversions. This overload set is created while
simplifying the constraint X <c String, so it uses the locator
from that constraint extended by a “conversion member” derivation
step. The complete locator for this overload set is, therefore:

function application -> apply argument -> tuple element #1 -> conversion member





When the solver selects a particular overload from the overload set,
it records the selected overload based on the locator of the overload
set. When it comes time to perform constraint application, the locator
is recreated based on context (as the bottom-up traversal walks the
expressions to rewrite them with their final types) and used to find
the appropriate conversion to call. The same mechanism is used to
select the appropriate overload when an expression refers directly to
an overloaded function. Additionally, when comparing two solutions to
the same constraint system, overload sets present in both solutions
can be found by comparing the locators for each of the overload
choices made in each solution. Naturally, all of these operations
require locators to be uniqued, which occurs in the constraint system
itself.




Simplifying Locators

Locators provide the derivation of location information that follows
the path of the solver, and can be used to query and recover the
important decisions made by the solver. However, the locators
determined by the solver may not directly refer to the most specific
expression for the purposes of identifying the corresponding source
location. For example, the failed constraint “Int conforms to
FloatLiteralConvertible” can most specifically by centered on the
floating-point literal 10.5, but its locator is:

function application -> apply argument -> tuple element #0





The process of locator simplification maps a locator to its most
specific expression. Essentially, it starts at the anchor of the
locator (in this case, the application f(10.5, x)) and then walks
the path, matching derivation steps to subexpressions. The “function
application” derivation step extracts the argument ((10.5,
x)). Then, the “tuple element #0” derivation extracts the tuple
element 0 subexpression, 10.5, at which point we have traversed
the entire path and now have the most specific expression for
source-location purposes.

Simplification does not always exhaust the complete path. For example,
consider a slight modification to our example, so that the argument to
f is provided by another call, we get a different result
entirely:

func f(i : Int, s : String) { }
func g() -> (f : Float, x : X) { }

f(g())





Here, the failing constraint is Float <c Int, with the same
locator:

function application -> apply argument -> tuple element #0





When we simplify this locator, we start with f(g()). The “apply
argument” derivation step takes us to the argument expression
g(). Here, however, there is no subexpression for the first tuple
element of g(), because it’s simple part of the tuple returned
from g. At this point, simplification ceases, and creates the
simplified locator:

function application of g -> tuple element #0












Performance

The performance of the type checker is dependent on a number of
factors, but the chief concerns are the size of the solution space
(which is exponential in the worst case) and the effectiveness of the
solver in exploring that solution space. This section describes some
of the techniques used to improve solver performance, many of which
can doubtless be improved.


Constraint Graph

The constraint graph describes the relationships among type variables
in the constraint system. Each vertex in the constraint graph
corresponds to a single type variable. The edges of the graph
correspond to constraints in the constraint system, relating sets of
type variables together. Technically, this makes the constraint graph
a multigraph, although the internal representation is more akin to a
graph with multiple kinds of edges: each vertex (node) tracks the set
of constraints that mention the given type variable as well as the set
of type variables that are adjacent to this type variable. A vertex
also includes information about the equivalence class corresponding to
a given type variable (when type variables have been merged) or the
binding of a type variable to a specific type.

The constraint graph is critical to a number of solver
optimizations. For example, it is used to compute the connected
components within the constraint graph, so that each connected
component can be solved independently. The partial results from all of
the connected components are then combined into a complete
solution. Additionally, the constraint graph is used to direct
simplification, described below.




Simplification Worklist

When the solver has attempted a type variable binding, that binding
often leads to additional simplifications in the constraint
system. The solver will query the constraint graph to determine which
constraints mention the type variable and will place those constraints
onto the simplification worklist. If those constraints can be
simplified further, it may lead to additional type variable bindings,
which in turn adds more constraints to the worklist. Once the worklist
is exhausted, simplification has completed. The use of the worklist
eliminates the need to reprocess constraints that could not have
changed because the type variables they mention have not changed.




Solver Scopes

The solver proceeds through the solution space in a depth-first
manner. Whenever the solver is about to make a guess—such as a
speculative type variable binding or the selection of a term from a
disjunction—it introduces a new solver scope to capture the results
of that assumption. Subsequent solver scopes are nested as the solver
builds up a set of assumptions, eventually leading to either a
solution or an error. When a solution is found, the stack of solver
scopes contains all of the assumptions needed to produce that
solution, and is saved in a separate solution data structure.

The solver scopes themselves are designed to be fairly cheap to create
and destroy. To support this, all of the major data structures used by
the constraint solver have reversible operations, allowing the solver
to easily backtrack. For example, the addition of a constraint to the
constraint graph can be reversed by removing that same constraint. The
constraint graph tracks all such additions in a stack: pushing a new
solver scope stores a marker to the current top of the stack, and
popping that solver scope reverses all of the operations on that stack
until it hits the marker.




Online Scoring

As the solver evaluates potential solutions, it keeps track of the
score of the current solution and of the best complete solution found
thus far. If the score of the current solution is ever greater than
that of the best complete solution, it abandons the current solution
and backtracks to continue its search.

The solver makes some attempt at evaluating cheaper solutions before
more expensive solutions. For example, it will prefer to try normal
conversions before user-defined conversions, prefer the “default”
literal types over other literal types, and prefer cheaper conversions
to more expensive conversions. However, some of the rules are fairly
ad hoc, and could benefit from more study.




Arena Memory Management

Each constraint system introduces its own memory allocation arena,
making allocations cheap and deallocation essentially free. The
allocation arena extends all the way into the AST context, so that
types composed of type variables (e.g., T0 -> T1) will be
allocated within the constraint system’s arena rather than the
permanent arena. Most data structures involved in constraint solving
use this same arena.






Diagnostics

The diagnostics produced by the type checker are currently
terrible. We plan to do something about this, eventually. We also
believe that we can implement some heroics, such as spell-checking
that takes into account the surrounding expression to only provide
well-typed suggestions.




	[1]	It is possible that both overloads will result in a solution,
in which case the solutions will be ranked based on the rules
discussed in the section Comparing Solutions.







	[2]	As of the time of this writing, the type rules of Swift have
not specifically been documented outside of the source code. The
constraints-based type checker contains a function matchTypes
that documents and implements each of these rules. A future revision
of this document will provide a more readily-accessible version.







	[3]	More accurately, as of this writing, “will compute”. The solver
doesn’t current compute meets and joins properly. Rather, it
arbitrarily picks one of the constraints “below” to start with.







	[4]	Again, as of this writing, the solver doesn’t actually compute
meets and joins, so the solver continues until it runs out of
supertypes to enumerate.
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Abstract

This document contains some useful information for debugging the
swift compiler and swift compiler output.




Printing the Intermediate Representations

The most important thing when debugging the compiler is to examine the IR.
Here is how to dump the IR after the main phases of the swift compiler
(assuming you are compiling with optimizations enabled):


	Parser. To print the AST after parsing:

swiftc -dump-ast -O file.swift







	SILGen. To print the SIL immediately after SILGen:

swiftc -emit-silgen -O file.swift







	Mandatory SIL passes. To print the SIL after the mandatory passes:

swiftc -emit-sil -Onone file.swift










Well, this is not quite true, because the compiler is running some passes
for -Onone after the mandatory passes, too. But for most purposes you will
get what you want to see.



	Performance SIL passes. To print the SIL after the complete SIL
oprimization pipeline:

swiftc -emit-sil -O file-swift







	IRGen. To print the LLVM IR after IR generation:

swiftc -emit-ir -Xfrontend -disable-llvm-optzns -O file.swift










	LLVM passes. To print the LLVM IR afer LLVM passes:

swiftc -emit-ir -O file.swift







	Code generation. To print the final generated code:

swiftc -S -O file.swift









Compilation stops at the phase where you print the output. So if you want to
print the SIL and the LLVM IR, you have to run the compiler twice.
The output of all these dump options (except -dump-ast) can be redirected
with an additional -o <file> option.


Debugging on SIL Level


Options for Dumping the SIL

Often it is not sufficient to dump the SIL at the begin or end of the
optimization pipeline.
The SILPassManager supports useful options to dump the SIL also between
pass runs.

The option -Xllvm -sil-print-all dumps the whole SIL module after all
passes. Although it prints only functions which were changed by a pass, the
output can get very large.

It is useful if you identified a problem in the final SIL and you want to
check which pass did introduce the wrong SIL.

There are several other options available, e.g. to filter the output by
function names (-Xllvm -sil-print-only-function/s) or by pass names
(-Xllvm -sil-print-before/after/around).
For details see PassManager.cpp.




Dumping the SIL and other Data in LLDB

When debugging the swift compiler with LLDB (or Xcode, of course), there is
even a more powerful way to examine the data in the compiler, e.g. the SIL.
Following LLVM’s dump() convention, many SIL classes (as well as AST classes)
provide a dump() function. You can call the dump function with LLDB’s
expression -- or print or p command.

For example, to examine a SIL instruction:

(lldb) p Inst->dump()
%12 = struct_extract %10 : $UnsafeMutablePointer<X>, #UnsafeMutablePointer._rawValue // user: %13





To dump a whole function at the beginning of a function pass:

(lldb) p getFunction()->dump()





SIL modules and even functions can get very large. Often it is more convenient
to dump their contents into a file and open the file in a separate editor.
This can be done with:

(lldb) p getFunction()->dump("myfunction.sil")





You can also dump the CFG (control flow graph) of a function:

(lldb) p Func->viewCFG()





This opens a preview window containing the CFG of the function. To continue
debugging press <CTRL>-C on the LLDB prompt.
Note that this only works in Xcode if the PATH variable in the scheme’s
environment setting contains the path to the dot tool.




Other Utilities

To view the CFG of a function (or code region) in a SIL file, you can use the
script swift/utils/viewcfg. It also works for LLVM IR files.
The script reads the SIL (or LLVM IR) code from stdin and displays the dot
graph file. Note: .dot files should be associated with the Graphviz app.




Using Breakpoints

LLDB has very powerful breakpoints, which can be utilized in many ways to debug
the compiler and swift executables. The examples in this section show the LLDB
command lines. In Xcode you can set the breakpoint properties by clicking ‘Edit
breakpoint’.

Let’s start with a simple example: sometimes you see a function in the SIL
output and you want to know where the function was created in the compiler.
In this case you can set a conditional breakpoint in SILFunction constructor
and check for the function name in the breakpoint condition:

(lldb) br set -c 'hasName("_TFC3nix1Xd")' -f SILFunction.cpp -l 91





Sometimes you want to know which optimization does insert, remove or move a
certain instruction. To find out, set a breakpoint in
ilist_traits<SILInstruction>::addNodeToList or
ilist_traits<SILInstruction>::removeNodeFromList, which are defined in
SILInstruction.cpp.
The following command sets a breakpoint which stops if a strong_retain
instruction is removed:

(lldb) br set -c 'I->getKind() == ValueKind::StrongRetainInst' -f SILInstruction.cpp -l 63





The condition can be made more precise e.g. by also testing in which function
this happens:

(lldb) br set -c 'I->getKind() == ValueKind::StrongRetainInst &&
           I->getFunction()->hasName("_TFC3nix1Xd")'
           -f SILInstruction.cpp -l 63





Let’s assume the breakpoint hits somewhere in the middle of compiling a large
file. This is the point where the problem appears. But often you want to break
a little bit earlier, e.g. at the entrance of the optimization’s run
function.

To achieve this, set another breakpoint and add breakpoint commands:

(lldb) br set -n GlobalARCOpts::run
Breakpoint 2
(lldb) br com add 2
> p int $n = $n + 1
> c
> DONE





Run the program (this can take quite a bit longer than before). When the first
breakpoint hits see what value $n has:

(lldb) p $n
(int) $n = 5





Now remove the breakpoint commands from the second breakpoint (or create a new
one) and set the ignore count to $n minus one:

(lldb) br delete 2
(lldb) br set -i 4 -n GlobalARCOpts::run





Run your program again and the breakpoint hits just before the first breakpoint.

Another method for accomplishing the same task is to set the ignore count of the
breakpoint to a large number, i.e.:

(lldb) br set -i 9999999 -n GlobalARCOpts::run





Then whenever the debugger stops next time (due to hitting another
breakpoint/crash/assert) you can list the current breakpoints:

(lldb) br list
1: name = 'GlobalARCOpts::run', locations = 1, resolved = 1, hit count = 85 Options: ignore: 1 enabled





which will then show you the number of times that each breakpoint was hit. In
this case, we know that GlobalARCOpts::run was hit 85 times. So, now
we know to ignore swift_getGenericMetadata 84 times, i.e.:

(lldb) br set -i 84 -n GlobalARCOpts::run








LLDB Scripts

LLDB has powerful capabilities of scripting in python among other languages. An
often overlooked, but very useful technique is the -s command to lldb. This
essentially acts as a pseudo-stdin of commands that lldb will read commands
from. Each time lldb hits a stopping point (i.e. a breakpoint or a
crash/assert), it will run the earliest command that has not been run yet. As an
example of this consider the following script (which without any loss of
generality will be called test.lldb):

env DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib
break set -n swift_getGenericMetadata
break mod 1 -i 83
process launch -- --stdlib-unittest-in-process --stdlib-unittest-filter "DefaultedForwardMutableCollection<OpaqueValue<Int>>.Type.subscript(_: Range)/Set/semantics"
break set -l 224
c
expr pattern->CreateFunction
break set -a $0
c
dis -f





TODO: Change this example to apply to the swift compiler instead of to the
stdlib unittests.

Then by running lldb test -s test.lldb, lldb will:


	Enable guard malloc.

	Set a break point on swift_getGenericMetadata and set it to be ignored for 83 hits.

	Launch the application and stop at swift_getGenericMetadata after 83 hits have been ignored.

	In the same file as swift_getGenericMetadata introduce a new breakpoint at line 224 and continue.

	When we break at line 224 in that file, evaluate an expression pointer.

	Set a breakpoint at the address of the expression pointer and continue.

	When we hit the breakpoint set at the function pointer’s address, disassemble
the function that the function pointer was passed to.



Using LLDB scripts can enable one to use complex debugger workflows without
needing to retype the various commands perfectly everytime.








Debugging Swift Executables

One can use the previous tips for debugging the swift compiler with swift
executables as well. Here are some additional useful techniques that one can use
in Swift executables.


Determining the mangled name of a function in LLDB

One problem that often comes up when debugging swift code in LLDB is that LLDB
shows the demangled name instead of the mangled name. This can lead to mistakes
where due to the length of the mangled names one will look at the wrong
function. Using the following command, one can find the mangled name of the
function in the current frame:

(lldb) image lookup -va $pc
Address: CollectionType3[0x0000000100004db0] (CollectionType3.__TEXT.__text + 16000)
Summary: CollectionType3`ext.CollectionType3.CollectionType3.MutableCollectionType2<A where A: CollectionType3.MutableCollectionType2>.(subscript.materializeForSet : (Swift.Range<A.Index>) -> Swift.MutableSlice<A>).(closure #1)
Module: file = "/Volumes/Files/work/solon/build/build-swift/validation-test-macosx-x86_64/stdlib/Output/CollectionType.swift.gyb.tmp/CollectionType3", arch = "x86_64"
Symbol: id = {0x0000008c}, range = [0x0000000100004db0-0x00000001000056f0), name="ext.CollectionType3.CollectionType3.MutableCollectionType2<A where A: CollectionType3.MutableCollectionType2>.(subscript.materializeForSet : (Swift.Range<A.Index>) -> Swift.MutableSlice<A>).(closure #1)", mangled="_TFFeRq_15CollectionType322MutableCollectionType2_S_S0_m9subscriptFGVs5Rangeqq_s16MutableIndexable5Index_GVs12MutableSliceq__U_FTBpRBBRQPS0_MS4__T_"
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One of Swift’s primary design goals is to allow efficient execution of code
without sacrificing load-time abstraction of implementation.

Abstraction of implementation means that code correctly written against a
published interface will correctly function when the underlying implementation
changes to anything which still satisfies the original interface. There are
many potential reasons to provide this sort of abstraction. Apple’s primary
interest is in making it easy and painless for our internal and external
developers to improve the ecosystem of Apple products by creating good and
secure programs and libraries; subtle deployment problems and/or unnecessary
dependencies on the behavior of our implementations would work against these
goals.

Our current design in Swift is to provide opt-out load-time abstraction of
implementation for all language features. Alone, this would either incur
unacceptable cost or force widespread opting-out of abstraction. We intend to
mitigate this primarily by designing the language and its implementation to
minimize unnecessary and unintended abstraction:


	Within the domain that defines an entity, all the details of its
implementation are available.

	When entities are not exposed outside their defining module, their
implementation is not constrained.

	By default, entities are not exposed outside their defining modules. This is
independently desirable to reduce accidental API surface area, but happens to
also interact well with the performance design.

	Avoiding unnecessary language guarantees and taking advantage of that
flexibility to limit load-time costs.



We also intend to provide tools to detect inadvertent changes in interfaces.
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Warning

This document is still in draft stages. Large additions and
restructuring are still planned, including:


	A summary for each declaration kind what changes are binary-compatible.

	A proper definition for “versioned entity”.

	Several possible versioned attribute syntaxes, instead of just this one.

	A discussion of back-dating, and how it usually is not allowed.

	A brief discussion of the implementation issues for fixed-layout value types with resilient members, and with non-public members.

	A revisal of the discussion on fixed-layout classes.

	A brief discussion of “deployment files”, which represent distribution groupings that are themselves versioned. (For example, OS X 10.10.3 contains Foundation version 1153.20.) Deployment files are likely to provide a concrete implementation of “resilience domains”.

	A way to specify “minimum deployment libraries”, like today’s minimum deployment targets.






Introduction

This model is intended to serve library designers whose libraries will evolve
over time. Such libraries must be both backwards-compatible, meaning that
existing clients should continue to work even when the library is updated, and
forwards-compatible, meaning that future clients will be able run using the
current version of the library. In simple terms:


	Last year’s apps should work with this year’s library.

	Next year’s apps should work with this year’s library.



This document will frequently refer to a library which vends public APIs, and
a single client that uses them. The same principles apply even when multiple
libraries and multiple clients are involved.

This model is not of interest to libraries that are bundled with their clients
(distribution via source, static library, or embedded/sandboxed dynamic
library). Because a client always uses a particular version of such a library,
there is no need to worry about backwards- or forwards-compatibility. Just as
developers with a single app target are not forced to think about access
control, anyone writing a bundled library should not be required to use any of
the annotations described below in order to achieve full performance.

The term “resilience” comes from the occasional use of “fragile” to describe
certain constructs that have very strict binary compatibility rules. For
example, a client’s use of a C struct is “fragile” in that if the library
changes the fields in the struct, the client’s use will “break”. In Swift,
changing the fields in a struct will not automatically cause problems for
existing clients, so we say the struct is “resilient”.




Using Versioned API

References to a versioned API must always be guarded with the appropriate
availability checks. This means that any client entities that rely on having
certain APIs from a library must themselves be restricted to contexts in which
those APIs are available. This is accomplished using @available as well,
by specifying the name of the client library along with the required version:

// Client code
@available(Magician 1.5)
class CrystalBallView : MagicView { … }





Library versions can also be checked dynamically using #available, allowing
for fallback behavior when the requested library version is not present:

func scareMySiblings() {
  if #available(Magician 1.2) {
    conjureDemons()
  } else {
    print("BOO!!")
  }
}






Note

Possible implementations include generating a hidden symbol into a library,
or putting the version number in some kind of metadata, like the Info.plist
in a framework bundle on Darwin platforms.



This is essentially the same model as the availability checking released in
Swift 2.0, but generalized for checking library versions instead of just OS
versions.




Publishing Versioned API

A library’s API is already marked with the public attribute. Versioning
information can be added to any public entity with the @available
attribute, this time specifying only a version number. This declares when the
entity was first exposed publicly in the current module.

@available(1.2)
public func conjureDemons()






TODO

Should this go on public instead? How does this play with SPI
<rdar://problem/18844229>?



Using the same attribute for both publishing and using versioned APIs helps tie
the feature together and enforces a consistent set of rules. The one difference
is that code within a library may always use all other entites declared within
the library (barring their own availability checks), since the entire library
is shipped as a unit. That is, even if a particular API was introduced in v1.0,
its (non-public) implementation may refer to APIs introduced in later versions.

Swift libraries are strongly encouraged to use semantic versioning [http://semver.org], but this
is not enforced by the language.

Some internal entities may also use @available. See Pinning below.




Giving Up Flexibility


Fixed-layout Structs

By default, a library owner may add members to a public struct between releases
without breaking binary compatibility. This requires a certain amount of care
and indirection when dealing with values of struct type to account for the
struct’s size and non-trivial fields not being known in advance, which of
course has performance implications.

To opt out of this flexibility, a struct may be marked @fixed_layout. This
promises that no stored properties will be added to or removed from the struct,
even private or internal ones. Methods and computed properties may
still be added to the struct.

The @fixed_layout attribute takes a version number, just like
@available. This is so that clients can deploy against older versions of
the library, which may have a different layout for the struct. (In this case
the client must manipulate the struct as if the @fixed_layout attribute
were absent.)


TODO

There’s a benefit to knowing that a struct was @fixed_layout since it
was first made available. How should that be spelled?




Fixed-layout Classes?

There is some benefit to knowing that a class has a fixed layout—that is,
that the stored properties of the class and all its superclasses are guaranteed
not to change in future versions of a library. This would, for example, allow
the class’s memory to be allocated on the stack, as long as it can be proven
that no references to the class escape. However, such a constraint is unlikely
to be provable in practice from outside the class’s own module, where its
primary operations are opaquely defined. Thus, until a tangible benefit has
been demonstrated, the @fixed_layout attribute will not apply to classes.

(Another benefit would be to simplify the calculations needed for the offsets
of stored properties within classes. However, it’s unclear that this would have
any significant benefit, particularly when most public properties are
manipulated through their accessors.)






Closed Enums

By default, a library owner may add new cases to a public enum between releases
without breaking binary compatibility. As with structs, this results in a fair
amount of indirection when dealing with enum values, in order to potentially
accomodate new values.


Note

If an enum value has a known case, or can be proven to belong to a set of
known cases, the compiler is of course free to use a more efficient
representation for the value, just as it may discard fields of structs that
are provably never accessed.



A library owner may opt out of this flexiblity by marking the enum as
@closed. A “closed” enum may not have any private or internal cases
and may not add new cases in the future. This guarantees to clients that the
enum cases are exhaustive.


Note

Were a “closed” enum allowed to have non-public cases, clients of the
library would still have to treat the enum as opaque and would still have
to be able to handle unknown cases in their switch statements.



The @closed attribute takes a version number, just like @available.
This is so that clients can deploy against older versions of the library, which
may have non-public cases in the enum. (In this case the client must manipulate
the enum as if the @closed attribute were absent.)

Even for default “open” enums, adding new cases should not be done lightly. Any
clients attempting to do an exhaustive switch over all enum cases will likely
not handle new cases well.


Note

One possibility would be a way to map new cases to older ones on older
clients. This would only be useful for certain kinds of enums, though, and
adds a lot of additional complexity, all of which would be tied up in
versions. Our generalized switch patterns probably make it hard to nail
down the behavior here.






Inlineable Functions

Functions are a very common example of resilience: the function’s declaration
is published as API, but its body may change between library versions as long
as it upholds the same semantic contracts. This applies to other function-like
constructs as well: initializers, accessors, and deinitializers.

However, sometimes it is useful to provide the body to clients as well. There
are a few common reasons for this:


	The function only performs simple operations, and so inlining it will both
save the overhead of a cross-library function call and allow further
optimization of callers.

	The function accesses a fixed-layout struct with non-public members; this
allows the library author to preserve invariants while still allowing
efficient access to the struct.



A public function marked with the @inlineable attribute makes its body
available to clients as part of the module’s public interface. The
@inlineable attribute takes a version number, just like @available;
clients may not assume that the body of the function is suitable when deploying
against older versions of the library.

Clients are not required to inline a function marked @inlineable.


Note

It is legal to change the implementation of an inlineable function in the
next release of the library. However, any such change must be made with the
understanding that it may or may not affect existing clients.




Restrictions

Because the body of an inlineable function (or method, accessor, initializer,
or deinitializer) may be inlined into another module, it must not make any
assumptions that rely on knowledge of the current module. Here is a trivial
example:

public struct Point2D {
  var x, y: Double
  public init(x: Double, y: Double) { … }
}

extension Point2D {
  @inlineable public func distanceTo(other: Point2D) -> Double {
    let deltaX = self.x - other.x
    let deltaY = self.y - other.y
    return sqrt(deltaX*deltaX + deltaY*deltaY)
  }
}





As written, this distanceTo method is not safe to inline. The next release
of the library could very well replace the implementation of Point2D with a
polar representation:

public struct Point2D {
  var r, theta: Double
  public init(x: Double, y: Double) { … }
}





and the x and y properties have now disappeared. To avoid this, we have
the following restrictions on the bodies of inlineable functions:


	They may not define any local types (other than typealiases).

	They must not reference any private entities, except for local
functions declared within the inlineable function itself.

	They must not reference any internal entities except for those that
have been availability-pinned. See below for a discussion of pinning.

	They must not reference any entities less available than the function
itself.



An inlineable function is still emitted into its own module’s binary. This
makes it possible to take an existing function and make it inlineable, as long
as the current body makes sense when deploying against an earlier version of
the library.

If the body of an inlineable function is used in any way by a client module
(say, to determine that it does not read any global variables), that module
must take care to emit and use its own copy of the function. This is because
analysis of the function body may not apply to the version of the function
currently in the library.




Local Functions

If an inlineable function contains local functions or closures, these are
implicitly made inlineable as well. This is important in case you decide to
change the inlineable function later. If the inlineable function is emitted
into a client module as described above, the local functions must be as well.
(At the SIL level, these local functions are considered to have shared
linkage.)




Pinning

An availability-pinned entity is simply an internal member, free
function, or global binding that has been marked @available. This promises
that the entity will be available at link time in the containing module’s
binary. This makes it safe to refer to such an entity from an inlineable
function. If a pinned entity is ever made public, its availability should
not be changed.


Note

Why isn’t this a special form of public? Because we don’t want it to
imply everything that public does, such as requiring overrides to be
public.



Because a pinned class member may eventually be made public, it must be assumed
that new overrides may eventually appear from outside the module unless the
member is marked final or the class is not publicly subclassable.

We could do away with the entire “pinning” feature if we restricted inlineable
functions to only refer to public entities. However, this removes one of the
primary reasons to make something inlineable: to allow efficient access to a
type while still protecting its invariants.


Note

Types are not allowed to be pinned because that would have many more ripple
effects. It’s not technically impossible; it just requires a lot more
thought.








A Unifying Theme

So far this proposal has talked about three separate ways to lock down on three
separate Swift entities: structs, enums, and functions. Each of these has a
different set of constraints it enforces on the library author and promises it
makes to clients. However, they all follow a common theme of giving up the
flexibility of future changes in exchange for improved performance and perhaps
some semantic guarantees. As such, we could consider using a common attribute,
say @fixed, @inline, or @fragile; either way, all attributes in
this section can be referred to as “fragility attributes”.




Constants

The let keyword creates a named constant whose value will not change for
the lifetime of that entity; for a global or static constant, this lasts from
when the constant is first accessed (and lazily initialized) until the end of
program execution. However, different versions of the same library may choose
to have different values for a constant—say, a string describing the
library’s copyright information.

In order to make use of a constant’s value across library boundaries, the
library owner may mark the constant as @inlineable. As when applied to
functions, the attribute takes a version number specifying which versions of
the library will behave correctly if the value is inlined into client code.

Note that if the constant’s initial value expression has any observable side
effects, including the allocation of class instances, it must not be treated
as inlineable. A constant must always behave as if it is initialized exactly
once.


TODO

Is this a condition we can detect at compile-time? Do we have to be
restricted to things that can be lowered to compile-time constants?






Properties

By default, a stored property in a struct or class may be replaced by a
computed property in later versions of a library. As shown above, the
@fixed_layout attribute promises that all stored properties currently in a
type will remain stored in all future library versions, but sometimes that
isn’t a reasonable promise. In this case, a library owner may still want to
allow clients to rely on a specific stored property remaining stored, by
applying the @fixed attribute to the property.


TODO

Is it valid for a fixed property to have observing accessors, or is it more
useful to promise that the setter is just a direct field access too? If it
were spelled @fragile, I would assume that accessors are permitted but
they become inlineable, and so not having any accessors is just a
degenerate case of that.

Is this feature sufficiently useful to be proposed initially at all, or is
it too granular?



Like all other attributes in this section, the @fixed attribute must
specify in which version of the library clients may rely on the property being
stored. The attribute may not be applied to non-final properties in classes.


Note

It would be possible to allow @fixed on non-final properties, and have
it only apply when the client code is definitively working with an instance
of the base class, not any of its subclasses. But this is probably too
subtle, and makes it look like the attribute is doing something useful when
it actually isn’t.






Other Promises About Types

Advanced users may want to promise more specific things about various types.
These are similar to the internal effects attribute we have for functions,
except that they can be enforced by the compiler.


	trivial: Promises that the type is trivial. Note that this is not a
recursive property; a trivial type may still require indirection due to
having an unknown size, and so a type containing that type is not considered
trivial.

	size_in_bits(N): Promises that the type is not larger than a certain
size. (It may be smaller.)

	no_payload: Promises that an enum does not have payloads on any of its
cases (even the non-public ones).



Collectively these features are known as “performance assertions”, to
underscore the fact that they do not affect how a type is used at the source
level, but do allow for additional optimizations. We may also expose some of
these qualities to static or dynamic queries for performance-sensitive code.

All of these features take a version number, just like the more semantic
fragility attributes above. The exact spelling is not proposed by this document.






Optimization

Allowing a library to evolve inhibits the optimization of client code in
several ways. For example:


	A function that currently does not access global memory might do so in the
future, so calls to it cannot be freely reordered in client code.

	A stored property may be replaced by a computed property in the future, so
client code must not try to access the storage directly.

	A struct may have additional members in the future, so client code must not
assume it fits in any fixed-sized allocation.



In order to make sure client code doesn’t make unsafe assumptions, queries
about properties that may change between library versions must be parameterized
with the availability context that is using the entity. An availability
context is a set of minimum platform and library versions that can be assumed
present for code executing within the context. This allows the compiler to
answer the question, “Given what I know about where this code will be executed,
what can I assume about a particular entity being used?”.

If the entity is declared within the same module as the code that’s using it,
then the code is permitted to know all the details of how the entity is
declared. After all, if the entity is changed, the code that’s using it will be
recompiled.

However, if the entity is declared in another module, then the code using it
must be more conservative, and will therefore receive more conservative answers
to its queries. For example, a stored property may report itself as computed.

The presence of versioned fragility attributes makes the situation more
complicated. Within a client function that requires version 1.5 of a particular
library, the compiler should be able to take advantage of any fragility
information (and performance assertions) introduced prior to version 1.5.


Inlineable Code

By default, the availability context for a library always includes the latest
version of the library itself, since that code is always distributed as a unit.
However, this is not true for functions that have been marked inlineable (see
Inlineable Functions above). Inlineable code must be treated as if it is
outside the current module, since once it’s inlined it will be.

For inlineable code, the availability context is exactly the same as the
equivalent non-inlineable code except that the assumed version of the
containing library is the version attached to the @inlineable attribute.
Code within this context must be treated as if the containing library were just
a normal dependency.

A publicly inlineable function still has a public symbol, which may be used
when the function is referenced from a client rather than called. This version
of the function is not subject to the same restrictions as the version that
may be inlined, and so it may be desireable to compile a function twice: once
for inlining, once for maximum performance.




Local Availability Contexts

Swift availability contexts aren’t just at the declaration level; they also
cover specific regions of code inside function bodies as well. These “local”
constructs are formed using the #available construct, which performs a
dynamic check.

In theory, it would be legal to allow code dominated by a #available check
to take advantage of additional fragility information introduced by the more
restrictive dependencies that were checked for. However, this is an additional
optimization that may be complicated to implement (and even to represent
properly in SIL), and so it is not a first priority.






Resilience Domains

As described in the Introduction, the features and considerations discussed
in this document do not apply to libraries distributed in a bundle with their
clients. In this case, a client can rely on all the current implementation
details of its libraries when compiling, since the same version of the library
is guaranteed to be present at runtime. This allows more optimization than
would otherwise be possible.

In some cases, a collection of libraries may be built and delivered together,
even though their clients may be packaged separately. (For example, the ICU
project is usually built into several library binaries, but these libraries are
always distributed together.) While the clients cannot rely on a particular
version of any library being present, the various libraries in the collection
should be able to take advantage of the implementations of their dependencies
also in the collection—that is, it should treat all entities as if marked
with the appropriate fragility attributes. Modules in this sort of collection
are said to be in the same resilience domain.

Exactly how resilience domains are specified is not covered by this proposal,
and indeed they are an additive feature. One possibility is that a library’s
resilience domain defaults to the name of the module, but can be overridden. If
a client has the same resilience domain name as a library it is using, it may
assume that version of the library will be present at runtime.




Protocol Conformances

Consider this scenario: a library is released containing both a MagicType
protocol and a Wand struct. Wand satisfies all the requirements of the
MagicType protocol, but the conformance was never actually declared in the
library. Someone files a bug, and it gets fixed in version 1.1.

Now, what happens when this client code is deployed against version 1.0 of the
library?

// Library
@available(1.0)
public func classifyMagicItem<Item: MagicType>(item: Item) -> MagicKind

// Client
let kind = classifyMagicItem(elderWand)
log("\(elderWand): \(kind)")





In order to call classifyMagicItem, the client code needs access to the
conformance of Wand to the MagicType protocol. But that conformance
didn’t exist in version 1.0, so the client program will fail on older systems.

Therefore, a library author needs a way to declare that a type now conforms
to a protocol when it previously didn’t. The way to do this is by placing
availability information on an extension:

@available(1.1)
extension Wand : MagicType {}





Note that this is unnecessary if either Wand or MagicType were itself
introduced in version 1.1; in that case, it would not be possible to access
the conformance from a context that only required 1.0.

As with access control, applying @available to an extension overrides the
default availability of entities declared within the extension; unlike access
control, entities within the extension may freely declare themselves to be
either more or less available than what the extension provides.


Note

This may feel like a regression from Objective-C, where duck typing would
allow a Wand to be passed as an id <MagicType> without ill effects.
However, Wand would still fail a -conformsToProtocol: check in
version 1.0 of the library, and so whether or not the client code will work
is dependent on what should be implementation details of the library.






Checking Binary Compatibility

With this many manual controls, it’s important that library owners be able to
check their work. Therefore, we intend to ship a tool that can compare two
versions of a library’s public interface, and present any suspect differences
for verification. Important cases include but are not limited to:


	Removal of public entities.

	Incompatible modifications to public entities, such as added protocol
conformances lacking versioning information.

	Unsafely-backdated “fragile” attributes as discussed in the Giving Up
Flexibility section.

	Unsafe modifications to entites marked with the “fragile” attributes, such as
adding a stored property to a @fixed_layout struct.




Automatic Versioning

A possible extension of this “checker” would be a tool that automatically
generates versioning information for entities in a library, given the previous
public interface of the library. This would remove the need for versions on any
of the fragility attributes, and declaring versioned API would be as simple as
marking an entity public. Obviously this would also remove the possibility
of human error in managing library versions.

However, making this tool has a number of additional difficulties beyond the
simple checker tool:


	The tool must be able to read past library interface formats. This is true
for a validation tool as well, but the cost of failure is much higher.
Similarly, the past version of a library must be available to correctly
compile a new version.

	Because the information goes into a library’s public interface, the
versioning tool must either be part of the compilation process, modify the
interface generated by compilation, or produce a sidecar file that can be
loaded when compiling the client. In any case, it must produce information
in addition to consuming it.

	Occasionally a library owner may want to override the inferred versions. This
can be accomplished by providing explicit versioning information, as in the
proposal.

	Bugs in the tool manifest as bugs in client programs.



Because this tool would require a fair amount of additional work, it is not
part of this initial model. It is something we may decide to add in the future.






Summary

When possible, Swift gives library developers freedom to evolve their code
without breaking binary compatibility. This has implications for both the
semantics and performance of client code, and so library owners also have tools
to waive the ability to make certain future changes. The language guarantees
that client code will never accidentally introduce implicit dependencies on
specific versions of libraries.




Glossary


	ABI

	The runtime contract for using a particular API (or for an entire library),
including things like symbol names, calling conventions, and type layout
information. Stands for “Application Binary Interface”.

	API

	An entity in a library that a client may use, or the collection of all
such entities in a library. (If contrasting with SPI, only those entities
that are available to arbitrary clients.) Marked public in
Swift. Stands for “Application Programming Interface”.

	availability context

	The collection of library and platform versions that can be assumed, at
minimum, to be present in a certain block of code. Availability contexts
are always properly nested, and the global availability context includes
the module’s minimum deployment target and minimum dependency versions.

	availability-pinned

	See Pinning.

	backwards-compatible

	A modification to an API that does not break existing clients. May also
describe the API in question.

	binary compatibility

	A general term encompassing both backwards- and forwards-compatibility
concerns. Also known as “ABI compatibility”.

	client

	A target that depends on a particular library. It’s usually easiest to
think of this as an application, but it could be another library.
(In certain cases, the “library” is itself an application, such as when
using Xcode’s unit testing support.)

	duck typing

	In Objective-C, the ability to treat a class instance as having an
unrelated type, as long as the instance handles all messages sent to it.
(Note that this is a dynamic constraint.)

	entity

	A type, function, member, or global in a Swift program.

	forwards-compatible

	An API that is designed to handle future clients, perhaps allowing certain
changes to be made without changing the ABI.

	fragility attribute

	See A Unifying Theme.

	module

	The primary unit of code sharing in Swift. Code in a module is always built
together, though it may be spread across several source files.

	performance assertion

	See Other Promises About Types.

	resilience domain

	A grouping for code that will always be recompiled and distributed
together, and can thus take advantage of details about a type
even if it changes in the future.

	SPI

	A subset of API that is only available to certain clients. Stands for
“System Programming Interface”.

	target

	In this document, a collection of code in a single Swift module that is
built together; a “compilation unit”. Roughly equivalent to a target in
Xcode.

	trivial

	A value whose assignment just requires a fixed-size bit-for-bit copy
without any indirection or reference-counting operations.
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  A module is the primary unit of code sharing in Swift. This document
describes the experience of using modules in Swift: what they are and what they
provide for the user.


Warning

This document was used in planning Swift 1.0; it has not been kept
up to date.
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High-Level Overview


A module contains declarations

The primary purpose of a module is to provide declarations of types, functions,
and global variables that are present in a library. Importing the
module gives access to these declarations and allows them to be used in your
code.

import Chess
import Foundation





You can also selectively import certain declarations from a module:

import func Chess.createGreedyPlayer
import class Foundation.NSRegularExpression






Comparison with Other Languages

Importing a module is much like importing a library in Ruby, Python, or Perl,
importing a class in Java, or including a header file in a C-family language.
However, unlike C, module files are not textually included and must be valid
programs on their own, and may not be in a textual format at all. Unlike Java,
declarations in a module are not visible at all until imported. And unlike the
dynamic languages mentioned, importing a module cannot automatically cause
any code to be run.






Imported declarations can be accessed with qualified or unqualified lookup

Once a module has been imported, its declarations are available for use within
the current source file. These declarations can be referred to by name, or
by qualifying them with the name of the module:

func playChess(blackPlayer : Chess.Player, whitePlayer : Chess.Player) {
  var board = Board() // refers to Chess.Board
}








Modules provide a unique context for declarations

A declaration in a module is unique; it is never the same as a declaration with
the same name in another module (with one caveat described below). This means
that two types Chess.Board and Xiangqi.Board can exist in the same
program, and each can be referred to as Board as long as the other is not
visible. If more than one imported module declares the same name, the full
qualified name can be used for disambiguation.


Note

This is accomplished by including the module name in the mangled name of a
declaration. Therefore, it is an ABI-breaking change to change the name of a
module containing a public declaration.




Warning

The one exception to this rule is declarations that must be compatible with
Objective-C. Such declarations follow the usual Objective-C rules for name
conflicts: all classes must have unique names, all protocols must have unique
names, and all constructors, methods, and properties must have unique names
within their class (including inherited methods and properties).






Modules may contain code

In addition to declarations, modules may contain implementations of the
functions they define. The compiler may choose to use this information when
optimizing a user’s program, usually by inlining the module code into a caller.
In some cases [1], the compiler may even use a module’s function
implementations to produce more effective diagnostics.

Modules can also contain autolinking information, which the compiler passes
on to the linker. This can be used to specify which library implements the
declarations in the module.




	[1]	Specifically, code marked with the @_transparent attribute is
required to be “transparent” to the compiler: it must be inlined and
will affect diagnostics.







Modules can “re-export” other modules


Warning

This feature is likely to be modified in the future.



Like any other body of code, a module may depend on other modules in its
implementation. The module implementer may also choose to re-export these
modules, meaning that anyone who imports the first module will also have access
to the declarations in the re-exported modules.

@exported import AmericanCheckers





As an example, the “Cocoa” framework on OS X exists only to re-export three
other frameworks: AppKit, Foundation, and CoreData.

Just as certain declarations can be selectively imported from a module, so too
can they be selectively re-exported, using the same syntax:

@exported import class AmericanCheckers.Board








Modules are uniquely identified by their name

Module names exist in a global namespace and must be unique. Like type names,
module names are conventionally capitalized.


TODO

While this matches the general convention for Clang, there are advantages to
being able to rename a module for lookup purposes, even if the ABI name stays
the same. It would also be nice to avoid having people stick prefixes on their
module names the way they currently do for Objective-C classes.




Note

Because access into a module and access into a type look the same, it is bad
style to declare a type with the same name as a top-level module used in your
program:

// Example 1:
import Foundation
import struct BuildingConstruction.Foundation

var firstSupport = Foundation.SupportType() // from the struct or from the module?


// Example 2:
import Foundation
import BuildingConstruction

Foundation.SupportType() // from the class or from the module?





In both cases, the type takes priority over the module, but this should still
be avoided.


TODO

Can we enforce this in the compiler? It seems like there’s no way around
Example 2, and indeed Example 2 is probably doing the wrong thing.










import

As shown above, a module is imported using the import keyword, followed by
the name of the module:

import AppKit





To import only a certain declaration from the module, you use the appropriate
declaration keyword:

import class AppKit.NSWindow
import func AppKit.NSApplicationMain
import var AppKit.NSAppKitVersionNumber
import typealias AppKit.NSApplicationPresentationOptions






	import typealias has slightly special behavior: it will match any type
other than a protocol, regardless of how the type is declared in the imported
module.

	import class, struct, and enum will succeed even if the
name given is a typealias for a type of the appropriate kind.

	import func will bring in all overloads of the named function.

	Using a keyword that doesn’t match the named declaration is an error.




TODO

There is currently no way to selectively import extensions or operators.




Multiple source files

Most programs are broken up into multiple source files, and these files may
depend on each other. To facilitate this design, declarations in all source
files in a module (including the “main module” for an executable) are implicitly
visible in each file’s context. It is almost as if all these files had been
loaded with import, but with a few important differences:


	The declarations in other files belong to the module being built, just like
those in the current file. Therefore, if you need to refer to them by
qualified name, you need to use the name of the module being built.

	A module is a fully-contained entity: it may depend on other modules, but
those other modules can’t depend on it. Source files within a module may
have mutual dependencies.




FIXME

This wouldn’t belong in the user model at all except for the implicit
visibility thing. Is there a better way to talk about this?






Ambiguity

Because two different modules can declare the same name, it is sometimes
necessary to use a qualified name to refer to a particular declaration:

import Chess
import Xiangqi

if userGame == "chess" {
  Chess.playGame()
} else if userGame == "xiangqi" {
  Xiangqi.playGame()
}





Here, both modules declare a function named playGame that takes no
arguments, so we have to disambiguate by “qualifying” the function name with
the appropriate module.

These are the rules for resolving name lookup ambiguities:


	Declarations in the current source file are best.

	Declarations from other files in the same module are better than
declarations from imports.

	Declarations from selective imports are better than declarations from
non-selective imports. (This may be used to give priority to a particular
module for a given name.)

	Every source file implicitly imports the core standard library as a
non-selective import.

	If the name refers to a function, normal overload resolution may resolve
ambiguities.






Submodules


Warning

This feature was never implemented, or even fully designed.



For large projects, it is usually desirable to break a single application or
framework into subsystems, which Swift calls “submodules”. A submodule is a
development-time construct used for grouping within a module. By default,
declarations within a submodule are considered “submodule-private”, which
means they are only visible within that submodule (rather than across the
entire module). These declarations will not conflict with declarations in other
submodules that may have the same name.

Declarations explicitly marked “whole-module” or “API” are still visible
across the entire module (even if declared within a submodule), and must have a
unique name within that space.

The qualified name of a declaration within a submodule consists of the
top-level module name, followed by the submodule name, followed by the
declaration.


Note

Submodules are an opportunity feature for Swift 1.0.




TODO

We need to decide once and for all whether implicit visibility applies across
submodule boundaries, i.e. “can I access the public Swift.AST.Module from
Swift.Sema without an import, or do I have to say import Swift.AST?”

Advantages of module-wide implicit visibility:


	Better name conflict checking. (The alternative is a linker error, or worse
no linker error if the names have different manglings.)

	Less work if things move around.

	Build time performance is consistent whether or not you use this feature.



Advantages of submodule-only implicit visibility:


	Code completion will include names of public things you don’t care about.

	We haven’t actually tested the build time performance of any large Swift
projects, so we don’t know if we can actually handle targets that contain
hundreds of files.

	Could be considered desirable to force declaring your internal dependencies
explicitly.

	In this mode, we could allow two “whole-module” declarations to have the
same name, since they won’t. (We could allow this in the other mode too
but then the qualified name would always be required.)



Both cases still use “submodule-only” as the default access control, so this
only affects the implicit visibility of whole-module and public declarations.






Import Search Paths


FIXME

Write this section. Can source files be self-contained modules? How does -i
mode work? Can the “wrong” module be found when looking for a dependency
(i.e. can I substitute my own Foundation and expect AppKit to work)?
How are modules stored on disk? How do hierarchical module names work?








Interoperability with Objective-C via Clang

The compiler has the ability to interoperate with C and Objective-C by
importing Clang modules. This feature of the Clang compiler
was developed to provide a “semantic import” extension to the C family of
languages. The Swift compiler uses this to expose declarations from C and
Objective-C as if they used native Swift types.

In all the examples above, import AppKit has been using this mechanism:
the module found with the name “AppKit” is generated from the Objective-C
AppKit framework.


Clang Submodules

Clang also has a concept of “submodules”, which are essentially hierarchically-
named modules. Unlike Swift’s Submodules, Clang submodules are visible
from outside the module. It is conventional for a top-level Clang module to
re-export all of its submodules, but sometimes certain submodules are specified
to require an explicit import:

import OpenGL.GL3








Module Overlays


Warning

This feature has mostly been removed from Swift; it’s only in use
in the “overlay” libraries bundled with Swift itself.



If a source file in module A includes import A, this indicates that the
source file is providing a replacement or overlay for an external module.
In most cases, the source file will re-export the underlying module, but
add some convenience APIs to make the existing interface more Swift-friendly.

This replacement syntax (using the current module name in an import) cannot
be used to overlay a Swift module, because Modules are uniquely identified by their name.




Multiple source files, part 2

In migrating from Objective-C to Swift, it is expected that a single program
will contain a mix of sources. The compiler therefore allows importing a single
Objective-C header, exposing its declarations to the main source file by
constructing a sort of “ad hoc” module. These can then be used like any
other declarations imported from C or Objective-C.


Note

This is describing the feature that eventually became “bridging
headers” for app targets.






Accessing Swift declarations from Objective-C


Warning

This never actually happened; instead, we went with “generated
headers” output by the Swift compiler.



Using the new @import syntax, Objective-C translation units can import
Swift modules as well. Swift declarations will be mirrored into Objective-C
and can be called natively, just as Objective-C declarations are mirrored into
Swift for Clang modules. In this case, only the declarations
compatible with Objective-C will be visible.


TODO

We need to actually do this, but it requires working on a branch of Clang, so
we’re pushing it back in the schedule as far as possible. The workaround is
to manually write header files for imported Swift classes.




TODO

Importing Swift sources from within the same target is a goal, but there are
many difficulties. How do you name a file to be imported? What if the file
itself depends on another Objective-C header? What if there’s a mutual
dependency across the language boundary? (That’s a problem in both directions,
since both Clang modules and Swift modules are only supposed to be exposed
once they’ve been type-checked.)








Glossary


	autolinking

	A technique where linking information is included in compiled object files,
so that external dependencies can be recorded without having to explicitly
specify them at link time.

	Clang module

	A module whose contents are generated from a C-family header or set of
headers. See Clang’s Modules [http://goto.apple.com/?http://clang.llvm.org/docs/Modules.html] documentation for more information.

	framework

	A mechanism for library distribution on OS X. Traditionally contains header
files describing the library’s API, a binary file containing the
implementation, and a directory containing any resources the library may
need.

Frameworks are also used on iOS, but as of iOS 7 custom frameworks cannot
be created by users.



	import

	To locate and read a module, then make its declarations available in the
current context.

	library

	Abstractly, a collection of APIs for a programmer to use, usually with a
common theme. Concretely, the file containing the implementation of these
APIs.

	mangled name

	A unique, internal name for a type or value. The term is most commonly used
in C++; see Wikipedia [http://goto.apple.com/?http://en.wikipedia.org/wiki/Name_mangling#Name_mangling_in_C.2B.2B] for some examples. Swift’s name mangling scheme is
not the same as C++’s but serves a similar purpose.

	module

	An entity containing the API for a library, to be imported into
a source file.

	qualified name

	A multi-piece name like Foundation.NSWindow, which names an entity
within a particular context. This document is concerned with the case where
the context is the name of an imported module.

	re-export

	To directly expose the API of one module through another module. Including
the latter module in a source file will behave as if the user had also
included the former module.

	serialized module

	A particular encoding of a module that contains declarations that have
already been processed by the compiler. It may also contain implementations
of some function declarations in SIL form.

	SIL

	“Swift Intermediate Language”, a stable IR for the distribution of
inlineable code.

	target

	A dynamic library, framework, plug-in, or application to be built.
A natural LTO boundary, and roughly the same as what Xcode requires
separate targets to build.
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Abstract: We propose a system for creating textual representations
of Swift objects. Our system unifies conversion to String, string
interpolation, printing, and representation in the REPL and debugger.


Scope


Goals


	The REPL and LLDB (“debuggers”) share formatting logic

	All types are “debug-printable” automatically

	Making a type “printable for humans” is super-easy

	toString()-ability is a consequence of printability.

	Customizing a type’s printed representations is super-easy

	Format variations such as numeric radix are explicit and readable

	Large textual representations do not (necessarily) ever need to be
stored in memory, e.g. if they’re being streamed into a file or over
a remote-debugging channel.






Non-Goals


Rationale

Localization (including single-locale linguistic processing such as
what’s found in Clang’s diagnostics subsystem) is the only major
application we can think of for dynamically-constructed format
strings, [3] and is certainly the most important consumer of
that feature.  Therefore, localization and dynamic format strings
should be designed together, and under this proposal the only
format strings are string literals containing interpolations
(“\(...)”). Cocoa programmers can still use Cocoa localization
APIs for localization jobs.

In Swift, only the most common cases need to be very terse.
Anything “fancy” can afford to be a bit more verbose. If and when
we address localization and design a full-featured dynamic string
formatter, it may make sense to incorporate features of printf
into the design.




	Localization issues such as pluralizing and argument
presentation order are beyond the scope of this proposal.

	Dynamic format strings are beyond the scope of this proposal.

	Matching the terseness of C‘s printf is a non-goal.








CustomStringConvertible Types

CustomStringConvertible types can be used in string literal interpolations,
printed with print(x), and can be converted to String with
x.toString().

The simple extension story for beginners is as follows:


“To make your type CustomStringConvertible, simply declare conformance to
CustomStringConvertible:

extension Person : CustomStringConvertible {}





and it will have the same printed representation you see in the
interpreter (REPL). To customize the representation, give your type
a func format() that returns a String:

extension Person : CustomStringConvertible {
  func format() -> String {
    return "\(lastName), \(firstName)"
  }
}








The formatting protocols described below allow more efficient and
flexible formatting as a natural extension of this simple story.




Formatting Variants

CustomStringConvertible types with parameterized textual representations
(e.g. number types) additionally support a format(…) method
parameterized according to that type’s axes of variability:

print( offset )
print( offset.format() ) // equivalent to previous line
print( offset.format(radix: 16, width: 5, precision: 3) )





Although format(…) is intended to provide the most general
interface, specialized formatting interfaces are also possible:

print( offset.hex() )








Design Details


Output Streams

The most fundamental part of this design is OutputStream, a thing
into which we can stream text: [2]

protocol OutputStream {
  func append(text: String)
}





Every String can be used as an OutputStream directly:

extension String : OutputStream {
  func append(text: String)
}








Debug Printing

Via compiler magic, everything conforms to the CustomDebugStringConvertible
protocol. To change the debug representation for a type, you don’t
need to declare conformance: simply give the type a debugFormat()

/// \brief A thing that can be printed in the REPL and the Debugger
protocol CustomDebugStringConvertible {
  typealias DebugRepresentation : Streamable = String

  /// \brief Produce a textual representation for the REPL and
  /// Debugger.
  func debugFormat() -> DebugRepresentation
}





Because String is a Streamable, your implementation of
debugFormat can just return a String. If want to write
directly to the OutputStream for efficiency reasons,
(e.g. if your representation is huge), you can return a custom
DebugRepresentation type.


Guideline

Producing a representation that can be consumed by the REPL
and LLDB to produce an equivalent object is strongly encouraged
where possible!  For example, String.debugFormat() produces
a representation starting and ending with “"”, where special
characters are escaped, etc. A struct Point { var x, y: Int }
might be represented as “Point(x: 3, y: 5)”.






(Non-Debug) Printing

The CustomStringConvertible protocol provides a “pretty” textual representation
that can be distinct from the debug format. For example, when s
is a String, s.format() returns the string itself,
without quoting.

Conformance to CustomStringConvertible is explicit, but if you want to use the
debugFormat() results for your type’s format(), all you
need to do is declare conformance to CustomStringConvertible; there’s nothing to
implement:

/// \brief A thing that can be print()ed and toString()ed.
protocol CustomStringConvertible : CustomDebugStringConvertible {
  typealias PrintRepresentation: Streamable = DebugRepresentation

  /// \brief produce a "pretty" textual representation.
  ///
  /// In general you can return a String here, but if you need more
  /// control, return a custom Streamable type
  func format() -> PrintRepresentation {
    return debugFormat()
  }

  /// \brief Simply convert to String
  ///
  /// You'll never want to reimplement this
  func toString() -> String {
    var result: String
    self.format().write(result)
    return result
  }
}








Streamable

Because it’s not always efficient to construct a String
representation before writing an object to a stream, we provide a
Streamable protocol, for types that can write themselves into an
OutputStream. Every Streamable is also a CustomStringConvertible,
naturally

protocol Streamable : CustomStringConvertible {
  func writeTo<T: OutputStream>(target: [inout] T)

  // You'll never want to reimplement this
  func format() -> PrintRepresentation {
    return this
  }
}








How String Fits In

String‘s debugFormat() yields a Streamable that
adds surrounding quotes and escapes special characters:

extension String : CustomDebugStringConvertible {
  func debugFormat() -> EscapedStringRepresentation {
    return EscapedStringRepresentation(self)
  }
}

struct EscapedStringRepresentation : Streamable {
  var _value: String

  func writeTo<T: OutputStream>(target: [inout] T) {
    target.append("\"")
    for c in _value {
      target.append(c.escape())
    }
    target.append("\"")
  }
}





Besides modeling OutputStream, String also conforms to
Streamable:

extension String : Streamable {
  func writeTo<T: OutputStream>(target: [inout] T) {
    target.append(self) // Append yourself to the stream
  }

  func format() -> String {
    return this
  }
}





This conformance allows most formatting code to be written entirely
in terms of String, simplifying usage. Types with other needs can
expose lazy representations like EscapedStringRepresentation
above.






Extended Formatting Example

The following code is a scaled-down version of the formatting code
used for Int. It represents an example of how a relatively
complicated format(…) might be written:

protocol CustomStringConvertibleInteger
  : IntegerLiteralConvertible, Comparable, SignedNumber, CustomStringConvertible {
  func %(lhs: Self, rhs: Self) -> Self
  func /(lhs: Self, rhs: Self) -> Self
  constructor(x: Int)
  func toInt() -> Int

  func format(radix: Int = 10, fill: String = " ", width: Int = 0)
    -> RadixFormat<This> {

    return RadixFormat(this, radix: radix, fill: fill, width: width)
  }
}

struct RadixFormat<T: CustomStringConvertibleInteger> : Streamable {
  var value: T, radix = 10, fill = " ", width = 0

  func writeTo<S: OutputStream>(target: [inout] S) {
    _writeSigned(value, &target)
  }

  // Write the given positive value to stream
  func _writePositive<T:CustomStringConvertibleInteger, S: OutputStream>(
    value: T, stream: [inout] S
  ) -> Int {
    if value == 0 { return 0 }
    var radix: T = T.fromInt(self.radix)
    var rest: T = value / radix
    var nDigits = _writePositive(rest, &stream)
    var digit = UInt32((value % radix).toInt())
    var baseCharOrd : UInt32 = digit <= 9 ? '0'.value : 'A'.value - 10
    stream.append(String(UnicodeScalar(baseCharOrd + digit)))
    return nDigits + 1
  }

  func _writeSigned<T:CustomStringConvertibleInteger, S: OutputStream>(
    value: T, target: [inout] S
  ) {
    var width = 0
    var result = ""

    if value == 0 {
      result = "0"
      ++width
    }
    else {
      var absVal = abs(value)
      if (value < 0) {
        target.append("-")
        ++width
      }
      width += _writePositive(absVal, &result)
    }

    while width < width {
      ++width
      target.append(fill)
    }
    target.append(result)
  }
}

extension Int : CustomStringConvertibleInteger {
  func toInt() -> Int { return this }
}








Possible Extensions (a.k.a. Complications)

We are not proposing these extensions. Since we have given them
considerable thought, they are included here for completeness and to
ensure our proposed design doesn’t rule out important directions of
evolution.


OutputStream Adapters

Most text transformations can be expressed as adapters over generic
OutputStreams. For example, it’s easy to imagine an upcasing
adapter that transforms its input to upper case before writing it to
an underlying stream:

struct UpperStream<UnderlyingStream:OutputStream> : OutputStream {
  func append(x: String) { base.append( x.toUpper() ) }
  var base: UnderlyingStream
}





However, upcasing is a trivial example: many such transformations—such
as trim() or regex replacement—are stateful, which implies some
way of indicating “end of input” so that buffered state can be
processed and written to the underlying stream:


struct TrimStream<UnderlyingStream:OutputStream> : OutputStream {
  func append(x: String) { ... }
  func close() { ... }
  var base: UnderlyingStream
  var bufferedWhitespace: String
}


This makes general OutputStream adapters more complicated to write
and use than ordinary OutputStreams.




Streamable Adapters

For every conceivable OutputStream adaptor there’s a corresponding
Streamable adaptor. For example:

struct UpperStreamable<UnderlyingStreamable:Streamable> {
  var base: UnderlyingStreamable

  func writeTo<T: OutputStream>(target: [inout] T) {
    var adaptedStream = UpperStream(target)
    self.base.writeTo(&adaptedStream)
    target = adaptedStream.base
  }
}





Then, we could extend Streamable as follows:

extension Streamable {
  typealias Upcased : Streamable = UpperStreamable<This>
  func toUpper() -> UpperStreamable<This> {
    return Upcased(self)
  }
}





and, finally, we’d be able to write:


print( n.format(radix:16).toUpper() )


The complexity of this back-and-forth adapter dance is daunting, and
might well be better handled in the language once we have some formal
model—such as coroutines—of inversion-of-control. We think it makes
more sense to build the important transformations directly into
format() methods, allowing, e.g.:


print( n.format(radix:16, case:.upper ) )







Possible Simplifications

One obvious simplification might be to fearlessly use String as
the universal textual representation type, rather than having a
separate Streamable protocol that doesn’t necessarily create a
fully-stored representation. This approach would trade some
efficiency for considerable design simplicity. It is reasonable to
ask whether the efficiency cost would be significant in real cases,
and the truth is that we don’t have enough information to know. At
least until we do, we opt not to trade away any CPU, memory, and
power.

If we were willing to say that only classes can conform to
OutputStream, we could eliminate the explicit [inout] where
OutputStreams are passed around. Then, we’d simply need a
class StringStream for creating String representations. It
would also make OutputStream adapters a bit simpler to use
because you’d never need to “write back” explicitly onto the target
stream. However, stateful OutputStream adapters would still need a
close() method, which makes a perfect place to return a copy of
the underlying stream, which can then be “written back.”  :


struct AdaptedStreamable<T:Streamable> {
  ...
  func writeTo<Target: OutputStream>(target: [inout] Target) {
    // create the stream that transforms the representation
    var adaptedTarget = adapt(target, adapter);
    // write the Base object to the target stream
    base.writeTo(&adaptedTarget)
    // Flush the adapted stream and, in case Target is a value type,
    // write its new value
    target = adaptedTarget.close()
  }
  ...
}


We think anyone writing such adapters can handle the need for explicit
write-back, and the ability to use String as an OutputStream
without additionally allocating a StringStream on the heap seems
to tip the balance in favor of the current design.






	[1]	Whether format(…) is to be a real protocol or merely
an ad-hoc convention is TBD. So far, there’s no obvious use for a
generic format with arguments that depend on the type being
formatted, so an ad-hoc convention would be just fine.







	[2]	We don’t support streaming individual code points
directly because it’s possible to create invalid sequences of code
points. For any code point that, on its own, represents a valid
Character (a.k.a. Unicode extended grapheme cluster [http://www.unicode.org/glossary/#extended_grapheme_cluster]), it is
trivial and inexpensive to create a String. For more
information on the relationship between String and
Character see the (forthcoming, as of this writing) document
Swift Strings State of the Union.







	[3]	In fact it’s possible to imagine a workable system for
localization that does away with dynamic format strings altogether,
so that all format strings are fully statically-checked and some of
the same formatting primitives can be used by localizers as by
fully-privileged Swift programmers. This approach would involve
compiling/JIT-ing localizations into dynamically-loaded modules.
In any case, that will wait until we have native Swift dylibs.
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This whitepaper discusses the Swift calling convention, at least as we
want it to be.

It’s a basic assumption in this paper that Swift shouldn’t make an
implicit promise to exactly match the default platform calling
convention.  That is, if a C or ObjC programmer manages to derive the
address of a Swift function, we don’t have to promise that an obvious
translation of the type of that function will be correctly callable
from C.  For example, this wouldn’t be guaranteed to work:

// In Swift:
func foo(x: Int, y: Double) -> MyClass { ... }

// In Objective-C:
extern id _TF4main3fooFTSiSd_CS_7MyClass(intptr_t x, double y);





We do sometimes need to be able to match C conventions, both to use
them and to generate implementations of them, but that level of
compatibility should be opt-in and site-specific.  If Swift would
benefit from internally using a better convention than C/ObjC uses,
and switching to that convention doesn’t damage the dynamic abilities
of our target platforms (debugging, dtrace, stack traces, unwinding,
etc.), there should be nothing preventing us from doing so.  (If we
did want to guarantee compatibility on this level, this paper would be
a lot shorter!)

Function call rules in high-level languages have three major
components, each operating on a different abstraction level:


	the high-level semantics of the call (pass-by-reference
vs. pass-by-value),

	the ownership and validity conventions about argument and result
values (“+0” vs. “+1”, etc.), and

	the “physical” representation conventions of how values are actually
communicated between functions (in registers, on the stack, etc.).



We’ll tackle each of these in turn, then conclude with a detailed
discussion of function signature lowering.


High-level semantic conventions

The major division in argument passing conventions between languages
is between pass-by-reference and pass-by-value languages.  It’s a
distinction that only really makes sense in languages with the concept
of an l-value, but Swift does, so it’s pertinent.

In general, the terms “pass-by-X” and “call-by-X” are used
interchangeably.  It’s unfortunate.  We’ll prefer “pass-by-X” for
consistency and to emphasize that these conventions are
argument-specific.


Pass-by-reference

In pass-by-reference (also called pass-by-name or pass-by-address), if
A is an l-value expression, foo(A) is passed some sort of opaque
reference through which the original l-value can be modified.  If A
is not an l-value, the language may prohibit this, or (if
pass-by-reference is the default convention) it may pass a temporary
variable containing the result of A.

Don’t confuse pass-by-reference with the concept of a reference
type.  A reference type is a type whose value is a reference to a
different object; for example, a pointer type in C, or a class type in
Java or Swift.  A variable of reference type can be passed by value
(copying the reference itself) or by reference (passing the variable
itself, allowing it to be changed to refer to a different object).
Note that references in C++ are a generalization of pass-by-reference,
not really a reference type; in C++, a variable of reference type
behaves completely unlike any other variable in the language.

Also, don’t confuse pass-by-reference with the physical convention of
passing an argument value indirectly.  In pass-by-reference, what’s
logically being passed is a reference to a tangible, user-accessible
object; changes to the original object will be visible in the
reference, and changes to the reference will be reflected in the
original object.  In an indirect physical convention, the argument is
still logically an independent value, no longer associated with the
original object (if there was one).

If every object in the language is stored in addressable memory,
pass-by-reference can be easily implemented by simply passing the
address of the object.  If an l-value can have more structure than
just a single, independently-addressable object, more information may
be required from the caller.  For example, an array argument in
FORTRAN can be a row or column vector from a matrix, and so arrays are
generally passed as both an address and a stride.  C and C++ do have
unaddressable l-values because of bitfields, but they forbid passing
bitfields by reference (in C++) or taking their address (in either
language), which greatly simplifies pointer and reference types in
those languages.

FORTRAN is the last remaining example of a language that defaults to
pass-by-reference.  Early FORTRAN implementations famously passed
constants by passing the address of mutable global memory initialized
to the constant; if the callee modified its parameter (illegal under
the standard, but...), it literally changed the constant for future
uses.  FORTRAN now allows procedures to explicitly take arguments by
value and explicitly declare that arguments must be l-values.

However, many languages do allow parameters to be explicitly marked as
pass-by-reference.  As mentioned for C++, sometimes only certain kinds
of l-values are allowed.

Swift allows parameters to be marked as pass-by-reference with
inout.  Arbitrary l-values can be passed.  The Swift convention is
to always pass an address; if the parameter is not addressable, it
must be materialized into a temporary and then written back.  See the
accessors proposal for more details about the high-level semantics of
inout arguments.




Pass-by-value

In pass-by-value, if A is an l-value expression, foo(A) copies the
current value there.  Any modifications foo makes to its parameter
are make to this copy, not to the original l-value.

Most modern languages are pass-by-value, with specific functions able
to opt in to pass-by-reference semantics.  This is exactly what Swift
does.

There’s not much room for variation in the high-level semantics of
passing arguments by value; all the variation is in the ownership and
physical conventions.






Ownership transfer conventions

Arguments and results that require cleanup, like an ObjC object
reference or a non-POD C++ object, raise two questions about
responsibility: who is responsible for cleaning it up, and when?

These questions arise even when the cleanup is explicit in code.  C’s
strdup function returns newly-allocated memory which the caller is
responsible for freeing, but strtok does not.  Objective-C has
standard naming conventions that describe which functions return
objects that the caller is responsible for releasing, and outside of
ARC these must be followed manually.  Of course, conventions designed
to be implemented by programmers are often designed around the
simplicity of that implementation, rather than necessarily being more
efficient.


Pass-by-reference arguments

Pass-by-reference arguments generally don’t involve a transfer of
ownership.  It’s assumed that the caller will ensure that the referent
is valid at the time of the call, and that the callee will ensure that
the referent is still valid at the time of return.

FORTRAN does actually allow parameters to be tagged as out-parameters,
where the caller doesn’t guarantee the validity of the argument before
the call.  Objective-C has something similar, where an indirect method
argument can be marked out; ARC takes advantage of this with
autoreleasing parameters to avoid a copy into the writeback temporary.
Neither of these are something we semantically care about supporting
in Swift.

There is one other theoretically interesting convention question here:
the argument has to be valid before the call and after the call, but
does it have to valid during the call?  Swift’s answer to this is
generally “yes”.  Swift does have inout aliasing rules that allow a
certain amount of optimization, but the compiler is forbidden from
exploiting these rules in any way that could cause memory corruption
(at least in the absence of race conditions).  So Swift has to ensure
that an inout argument is valid whenever it does something
(including calling an opaque function) that could potentially access
the original l-value.

If Swift allowed local variables to be captured through inout
parameters, and therefore needed to pass an implicit owner parameter
along with an address, this owner parameter would behave like a
pass-by-value argument and could use any of the conventions listed
below.  However, the optimal convention for this is obvious: it should
be guaranteed, since captures are very unlikely and callers are
almost always expected to use the value of an inout variable
afterwards.




Pass-by-value arguments

All conventions for this have performance trade-offs.

We’re only going to discuss static conventions, where the transfer
is picked at compile time.  It’s possible to have a dynamic
convention, where the caller passes a flag indicating whether it’s
okay to directly take responsibility for the value, and the callee can
(conceptually) return a flag indicating whether it actually did take
responsibility for it.  If copying is extremely expensive, that can be
worthwhile; otherwise, the code cost may overwhelm any other benefits.

This discussion will ignore one particular impact of these conventions
on code size.  If a function has many callers, conventions that
require more code in the caller are worse, all else aside.  If a
single call site has many possible targets, conventions that require
more code in the callee are worse, all else aside.  It’s not really
reasonable to decide this in advance for unknown code; we could maybe
make rules about code calling system APIs, except that system APIs are
by definition locked down, and we can’t change them.  It’s a
reasonable thing to consider changing with PGO, though.


Responsibility

A common refrain in this performance analysis will be whether a
function has responsibility for a value.  A function has to get a
value from somewhere:


	A caller is usually responsible for the return values it receives:
the callee generated the value and the caller is responsible for
destroying it.  Any other convention has to rely on heavily
restricting what kind of value can be returned.  (If you’re thinking
about Objective-C autoreleased results, just accept this for now;
we’ll talk about that later.)



	A function isn’t necessarily responsible for a value it loads from
memory.  Ignoring race conditions, the function may be able to
immediately use the value without taking any specific action to keep
it valid.



	A callee may or may not be responsible for a value passed as a
parameter, depending on the convention it was passed with.



	A function might come from a source that doesn’t necessarily make
the function responsible, but if the function takes an action which
invalidates the source before using the value, the function has to
take action to keep the value valid.  At that point, the function
has responsibility for the value despite its original source.

For example, a function foo() might load a reference r from a
global variable x, call an unknown function bar(), and then use
r in some way.  If bar() can’t possibly overwrite x, foo()
doesn’t have to do anything to keep r alive across the call;
otherwise it does (e.g. by retaining it in a refcounted
environment).  This is a situation where humans are often much
smarter than compilers.  Of course, it’s also a situation where
humans are sometimes insufficiently conservative.





A function may also require responsibility for a value as part of its
operation:


	Since a variable is always responsible for the current value it
stores, a function which stores a value into memory must first gain
responsibility for that value.

	A callee normally transfers responsibility for its return value to
its caller; therefore it must gain responsibility for its return
value before returning it.

	A caller may need to gain responsibility for a value before passing
it as an argument, depending on the parameter’s ownership-transfer
convention.






Known conventions

There are three static parameter conventions for ownership worth
considering here:


	The caller may transfer responsibility for the value to the callee.
In SIL, we call this an owned parameter.

This is optimal if the caller has responsibility for the value and
doesn’t need it after the call.  This is an extremely common
situation; for example, it comes up whenever a call result is
immediately used an argument.  By giving the callee responsibility
for the value, this convention allows the callee to use the value at
a later point without taking any extra action to keep it alive.

The flipside is that this convention requires a lot of extra work
when a single value is used multiple times in the caller.  For
example, a value passed in every iteration of a loop will need to be
copied/retained/whatever each time.



	The caller may provide the value without any responsibility on
either side.  In SIL, we call this an unowned parameter.  The
value is guaranteed to be valid at the moment of the call, and in
the absence of race conditions, that guarantee can be assumed to
continue unless the callee does something that might invalidate it.
As discussed above, humans are often much smarter than computers
about knowing when that’s possible.

This is optimal if the caller can acquire the value without
responsibility and the callee doesn’t require responsibility of it.
In very simple code — e.g., loading values from an array and
passing them to a comparator function which just reads a few fields
from each and returns — this can be extremely efficient.

Unfortunately, this convention is completely undermined if either
side has to do anything that forces it to take action to keep the
value alive.  Also, if that happens on the caller side, the
convention can keep values alive longer than is necessary.  It’s
very easy for both sides of the convention to end up doing extra
work because of this.



	The caller may assert responsibility for the value.  In SIL, we call
this a guaranteed parameter.  The callee can rely on the value
staying valid for the duration of the call.

This is optimal if the caller needs to use the value after the call
and either has responsibility for it or has a guarantee like this
for it.  Therefore, this convention is particularly nice when a
value is likely to be forwarded by value a great deal.

However, this convention does generally keep values alive longer
than is necessary, since the outermost function which passed it as
an argument will generally be forced to hold a reference for the
duration.  By the same mechanism, in refcounted systems, this
convention tends to cause values to have multiple retains active at
once; for example, if a copy-on-write array is created in one
function, passed to another, stored in a mutable variable, and then
modified, the callee will see a reference count of 2 and be forced
to do a structural copy.  This can occur even if the caller
literally constructed the array for the sole and immediate purpose
of passing it to the callee.








Analysis

Objective-C generally uses the unowned convention for object-pointer
parameters.  It is possible to mark a parameter as being consumed,
which is basically the owned convention.  As a special case, in ARC we
assume that callers are responsible for keeping self values alive
(including in blocks), which is effectively the guaranteed
convention.

unowned causes a lot of problems without really solving any, in my
experience looking at ARC-generated code and optimizer output.  A
human can take advantage of it, but the compiler is so frequently
blocked.  There are many common idioms (like chains of functions that
just add default arguments at each step) have really awful performance
because the compiler is adding retains and releases at every single
level.  It’s just not a good convention to adopt by default.  However,
we might want to consider allowing specific function parameters to opt
into it; sort comparators are an particularly interesting candidate
for this.  unowned is very similar to C++’s const & for things
like that.

guaranteed is good for some things, but it causes a lot of silly
code bloat when values are really only used in one place, which is
quite common.  The liveness / refcounting issues are also pretty
problematic.  But there is one example that’s very nice for
guaranteed: self.  It’s quite common for clients of a type to call
multiple methods on a single value, or for methods to dispatch to
multiple other methods, which are exactly the situations where
guaranteed excels.  And it’s relatively uncommon (but not
unimaginable) for a non-mutating method on a copy-on-write struct to
suddenly store self aside and start mutating that copy.

owned is a good default for other parameters.  It has some minor
performance disadvantages (unnecessary retains if you have an
unoptimizable call in a loop) and some minor code size benefits (in
common straight-line code), but frankly, both of those points pale in
importance to the ability to transfer copy-on-write structures around
without spuriously increasing reference counts.  It doesn’t take too
many unnecessary structural copies before any amount of
reference-counting traffic (especially the Swift-native
reference-counting used in copy-on-write structures) is basically
irrelevant in comparison.






Result values

There’s no major semantic split in result conventions like that
between pass-by-reference and pass-by-value.  In most languages, a
function has to return a value (or nothing).  There are languages like
C++ where functions can return references, but that’s inherently
limited, because the reference has to refer to something that exists
outside the function.  If Swift ever adds a similar language
mechanism, it’ll have to be memory-safe and extremely opaque, and
it’ll be easy to just think of that as a kind of weird value result.
So we’ll just consider value results here.

Value results raise some of the same ownership-transfer questions as
value arguments.  There’s one major limitation: just like a
by-reference result, an actual unowned convention is inherently
limited, because something else other than the result value must be
keeping it valid.  So that’s off the table for Swift.

What Objective-C does is something more dynamic.  Most APIs in
Objective-C give you a very ephemeral guarantee about the validity of
the result: it’s valid now, but you shouldn’t count on it being valid
indefinitely later.  This might be because the result is actually
owned by some other object somewhere, or it might be because the
result has been placed in the autorelease pool, a thread-local data
structure which will (when explicitly drained by something up the call
chain) eventually release that’s been put into it.  This autorelease
pool can be a major source of spurious memory growth, and in classic
manual reference-counting it was important to drain it fairly
frequently.  ARC’s response to this convention was to add an
optimization which attempts to prevent things from ending up in the
autorelease pool; the net effect of this optimization is that ARC ends
up with an owned reference regardless of whether the value was
autoreleased.  So in effect, from ARC’s perspective, these APIs still
return an owned reference, mediated through some extra runtime calls
to undo the damage of the convention.

So there’s really no compelling alternative to an owned return
convention as the default in Swift.






Physical conventions

The lowest abstraction level for a calling convention is the actual
“physical” rules for the call:


	where the caller should place argument values in registers and
memory before the call,

	how the callee should pass back the return values in registers
and/or memory after the call, and

	what invariants hold about registers and memory over the call.



In theory, all of these could be changed in the Swift ABI.  In
practice, it’s best to avoid changes to the invariant rules, because
those rules could complicate Swift-to-C interoperation:


	Assuming a higher stack alignment would require dynamic realignment
whenever Swift code is called from C.

	Assuming a different set of callee-saved registers would require
additional saves and restores when either Swift code calls C or is
called from C, depending on the exact change.  That would then
inhibit some kinds of tail call.



So we will limit ourselves to considering the rules for allocating
parameters and results to registers.  Our platform C ABIs are usually
quite good at this, and it’s fair to ask why Swift shouldn’t just use
C’s rules.  There are three general answers:


	Platform C ABIs are specified in terms of the C type system, and the
Swift type system allows things to be expressed which don’t have
direct analogues in C (for example, enums with payloads).

	The layout of structures in Swift does not necessarily match their
layout in C, which means that the C rules don’t necessarily cover
all the cases in Swift.

	Swift places a larger emphasis on first-class structs than C does.
C ABIs often fail to allocate even small structs to registers, or
use inefficient registers for them, and we would like to be somewhat
more aggressive than that.



Accordingly, the Swift ABI is defined largely in terms of lowering: a
Swift function signature is translated to a C function signature with
all the aggregate arguments and results eliminated (possibly by
deciding to pass them indirectly).  This lowering will be described in
detail in the final section of this whitepaper.

However, there are some specific circumstances where we’d like to
deviate from the platform ABI:


Aggregate results

As mentioned above, Swift puts a lot of focus on first-class value
types.  As part of this, it’s very valuable to be able to return
common value types fully in registers instead of indirectly.  The
magic number here is three: it’s very common for copy-on-write value
types to want about three pointers’ worth of data, because that’s just
enough for some sort of owner pointer plus a begin/end pair.

Unfortunately, many common C ABIs fall slightly short of that.  Even
those ABIs that do allow small structs to be returned in registers
tend to only allow two pointers’ worth.  So in general, Swift would
benefit from a very slightly-tweaked calling convention that allocates
one or two more registers to the result.




Implicit parameters

There are several language features in Swift which require implicit
parameters:


Closures

Swift’s function types are “thick” by default, meaning that a function
value carries an optional context object which is implicitly passed to
the function when it is called.  This context object is
reference-counted, and it should be passed guaranteed for
straightforward reasons:


	It’s not uncommon for closures to be called many times, in which
case an owned convention would be unnecessarily expensive.

	While it’s easy to imagine a closure which would want to take
responsibility for its captured values, giving it responsibility for
a retain of the context object doesn’t generally allow that.  The
closure would only be able to take ownership of the captured values
if it had responsibility for a unique reference to the context.
So the closure would have to be written to do different things based
on the uniqueness of the reference, and it would have to be able to
tear down and deallocate the context object after stealing values
from it.  The optimization just isn’t worth it.

	It’s usually straightforward for the caller to guarantee the
validity of the context reference; worst case, a single extra
Swift-native retain/release is pretty cheap.  Meanwhile, not having
that guarantee would force many closure functions to retain their
contexts, since many closures do multiple things with values from
the context object.  So unowned would not be a good convention.



Many functions don’t actually need a context, however; they are
naturally “thin”.  It would be best if it were possible to construct a
thick function directly from a thin function without having to
introduce a thunk just to move parameters around the missing context
parameter.  In the worst case, a thunk would actually require the
allocation of a context object just to store the original function
pointer; but that’s only necessary when converting from a completely
opaque function value.  When the source function is known statically,
which is far more likely, the thunk can just be a global function
which immediately calls the target with the correctly shuffled
arguments.  Still, it’d be better to be able to avoid creating such
thunks entirely.

In order to reliably avoid creating thunks, it must be possible for
code invoking an opaque thick function to pass the context pointer in
a way that can be safely and implicitly ignored if the function
happens to actually be thin.  There are two ways to achieve this:


	The context can be passed as the final parameter.  In most C calling
conventions, extra arguments can be safely ignored; this is because
most C calling conventions support variadic arguments, and such
conventions inherently can’t rely on the callee knowing the extent
of the arguments.

However, this is sub-optimal because the context is often used
repeatedly in a closure, especially at the beginning, and putting it
at the end of the argument list makes it more likely to be passed on
the stack.



	The context can be passed in a register outside of the normal
argument sequence.  Some ABIs actually even reserve a register for
this purpose; for example, on x86-64 it’s %r10.  Neither of the
ARM ABIs do, however.





Having an out-of-band register would be the best solution.

(Surprisingly, the ownership transfer convention for the context
doesn’t actually matter here.  You might think that an owned
convention would be prohibited, since the callee would fail to release
the context and would therefore leak it.  However, a thin function
should always have a nil context, so this would be harmless.)

Either solution works acceptably with curried partial application,
since the inner parameters can be left in place while transforming the
context into the outer parameters.  However, an owned convention
would either prevent the uncurrying forwarder from tail-calling the
main function or force all the arguments to be spilled.  Neither is
really acceptable; one more argument against an owned convention.
(This is another example where guaranteed works quite nicely, since
the guarantees are straightforward to extend to the main function.)




self

Methods (both static and instance) require a self parameter.  In all
of these cases, it’s reasonable to expect that self will used
frequently, so it’s best to pass it in a register.  Also, many methods
call other methods on the same object, so it’s also best if the
register storing self is stable across different method signatures.

In static methods on value types, self doesn’t require any dynamic
information: there’s only one value of the metatype, and there’s
usually no point in passing it.

In static methods on class types, self is a reference to the class
metadata, a single pointer.  This is necessary because it could
actually be the class object of a subclass.

In instance methods on class types, self is a reference to the
instance, again a single pointer.

In mutating instance methods on value types, self is the address of
an object.

In non-mutating instance methods on value types, self is a value; it
may require multiple registers, or none, or it may need to be passed
indirectly.

All of these cases except mutating instance methods on value types can
be partially applied to create a function closure whose type is the
formal type of the method.  That is, if class A has a method
declared func foo(x: Int) -> Double, then A.foo yields a function
of type (Int) -> Double.  Assuming that we continue to feel that
this is a useful language feature, it’s worth considered how we could
support it efficiently.  The expenses associated with a partial
application are (1) the allocation of a context object and (2) needing
to introduce a thunk to forward to the original function.  All else
aside, we can avoid the allocation if the representation of self is
compatible with the representation of a context object reference; this
is essentially true only if self is a class instance using Swift
reference counting.  Avoiding the thunk is possible only if we
successfully avoided the allocation (since otherwise a thunk is
required in order to extract the correct self value from the
allocated context object) and self is passed in exactly the same
manner as a closure context would be.

It’s unclear whether making this more efficient would really be
worthwhile on its own, but if we do support an out-of-band context
parameter, taking advantage of it for methods is essentially trivial.






Error handling

The calling convention implications of Swift’s error handling design
aren’t yet settled.  It may involve extra parameters; it may involve
extra return values.  Considerations:


	Callers will generally need to immediately check for an error.
Being able to quickly check a register would be extremely
convenient.



	If the error is returned as a component of the result value, it
shouldn’t be physically combined with the normal result.  If the
normal result is returned in registers, it would be unfortunate to
have to do complicated logic to test for error.  If the normal
result is returned indirectly, contorting the indirect result with
the error would likely prevent the caller from evaluating the call
in-place.



	It would be very convenient to be able to trivially turn a function
which can’t produce an error into a function which can.  This is an
operation that we expect higher-order code to have do frequently, if
it isn’t completely inlined away.  For example:

// foo() expects its argument to follow the conventions of a
// function that's capable of throwing.
func foo(fn: () throws -> ()) throwsIf(fn)

// Here we're passing foo() a function that can't throw; this is
// allowed by the subtyping rules of the language.  We'd like to be
// able to do this without having to introduce a thunk that maps
// between the conventions.
func bar(fn: () -> ()) {
  foo(fn)
}









We’ll consider two ways to satisfy this.

The first is to pass a pointer argument that doesn’t interfere with
the normal argument sequence.  The caller would initialize the memory
to a zero value.  If the callee is a throwing function, it would be
expected to write the error value into this argument; otherwise, it
would naturally ignore it.  Of course, the caller then has to load
from memory to see whether there’s an error.  This would also either
consume yet another register not in the normal argument sequence or
have to be placed at the end of the argument list, making it more
likely to be passed on the stack.

The second is basically the same idea, but using a register that’s
otherwise callee-save.  The caller would initialize the register to a
zero value.  A throwing function would write the error into it; a
non-throwing function would consider it callee-save and naturally
preserve it.  It would then be extremely easy to check it for an
error.  Of course, this would take away a callee-save register in the
caller when calling throwing functions.  Also, if the caller itself
isn’t throwing, it would have to save and restore that register.

Both solutions would allow tail calls, and the zero store could be
eliminated for direct calls to known functions that can throw.  The
second is the clearly superior solution, but definitely requires more
work in the backend.




Default argument generators

By default, Swift is resilient about default arguments and treats them
as essentially one part of the implementation of the function.  This
means that, in general, a caller using a default argument must call a
function to emit the argument, instead of simply inlining that
emission directly into the call.

These default argument generation functions are unlike any other
because they have very precise information about how their result will
be used: it will be placed into a specific position in specific
argument list.  The only reason the caller would ever want to do
anything else with the result is if it needs to spill the value before
emitting the call.

Therefore, in principle, it would be really nice if it were possible
to tell these functions to return in a very specific way, e.g. to
return two values in the second and third argument registers, or to
return a value at a specific location relative to the stack pointer
(although this might be excessively constraining; it would be
reasonable to simply opt into an indirect return instead).  The
function should also preserve earlier argument registers (although
this could be tricky if the default argument generator is in a generic
context and therefore needs to be passed type-argument information).

This enhancement is very easy to postpone because it doesn’t affect
any basic language mechanics.  The generators are always called
directly, and they’re inherently attached to a declaration, so it’s
quite easy to take any particular generator and compatibly enhance it
with a better convention.




ARM32

Most of the platforms we support have pretty good C calling
conventions.  The exceptions are i386 (for the iOS simulator) and
ARM32 (for iOS).  We really, really don’t care about i386, but iOS on
ARM32 is still an important platform.  Switching to a better physical
calling convention (only for calls from Swift to Swift, of course)
would be a major improvement.

It would be great if this were as simple as flipping a switch, but
unfortunately the obvious convention to switch to (AAPCS-VFP) has a
slightly different set of callee-save registers: iOS treats r9 as a
scratch register.  So we’d really want a variant of AAPCS-VFP that did
the same.  We’d also need to make sure that SJ/LJ exceptions weren’t
disturbed by this calling convention; we aren’t really supporting
exception propagation through Swift frames, but completely breaking
propagation would be unfortunate, and we may need to be able to
catch exceptions.

So this would also require some amount of additional support from the
backend.






Function signature lowering

Function signatures in Swift are lowered in two phases.


Semantic lowering

The first phase is a high-level semantic lowering, which does a number
of things:


	It determines a high-level calling convention: specifically, whether
the function must match the C calling convention or the Swift
calling convention.



	It decides the types of the parameters:


	Functions exported for the purposes of C or Objective-C may need
to use bridged types rather than Swift’s native types.  For
example, a function that formally returns Swift’s String type
may be bridged to return an NSString reference instead.

	Functions which are values, not simply immediately called, may
need their types lowered to follow to match a specific generic
abstraction pattern.  This applies to functions that are
parameters or results of the outer function signature.





	It identifies specific arguments and results which must be passed
indirectly:


	Some types are inherently address-only:
	The address of a weak reference must be registered with the
runtime at all times; therefore, any struct with a weak field
must always be passed indirectly.

	An existential type (if not class-bounded) may contain an
inherently address-only value, or its layout may be sensitive to
its current address.

	A value type containing an inherently address-only type as a
field or case payload becomes itself inherently address-only.





	Some types must be treated as address-only because their layout is
not known statically:
	The layout of a resilient value type may change in a later
release; the type may even become inherently address-only by
adding a weak reference.

	In a generic context, the layout of a type may be dependent on a
type parameter.  The type parameter might even be inherently
address-only at runtime.

	A value type containing a type whose layout isn’t known
statically itself generally will not have a layout that can be
known statically.





	Other types must be passed or returned indirectly because the
function type uses an abstraction pattern that requires it.  For
example, a generic map function expects a function that takes a
T and returns a U; the generic implementation of map will
expect these values to be passed indirectly because their layout
isn’t statically known.  Therefore, the signature of a function
intended to be passed as this argument must pass them indirectly,
even if they are actually known statically to be non-address-only
types like (e.g.) Int and Float.





	It expands tuples in the parameter and result types.  This is done
at this level both because it is affected by abstraction patterns
and because different tuple elements may use different ownership
conventions.  (This is most likely for imported APIs, where it’s the
tuple elements that correspond to specific C or ObjC parameters.)

This completely eliminates top-level tuple types from the function
signature except when they are a target of abstraction and thus are
passed indirectly.  (A function with type (Float, Int) -> Float
can be abstracted as (T) -> U, where T == (Float, Int).)



	It determines ownership conventions for all parameters and results.





After this phase, a function type consists of an abstract calling
convention, a list of parameters, and a list of results.  A parameter
is a type, a flag for indirectness, and an ownership convention.  A
result is a type, a flag for indirectness, and an ownership
convention.  (Results need ownership conventions only for non-Swift
calling conventions.)  Types will not be tuples unless they are
indirect.

Semantic lowering may also need to mark certain parameters and results
as special, for the purposes of the special-case physical treatments
of self, closure contexts, and error results.




Physical lowering

The second phase of lowering translates a function type produced by
semantic lowering into a C function signature.  If the function
involves a parameter or result with special physical treatment,
physical lowering initially ignores this value, then adds in the
special treatment as agreed upon with the backend.


General expansion algorithm

Central to the operation of the physical-lowering algorithm is the
generic expansion algorithm.  This algorithm turns any
non-address-only Swift type in a sequence of zero or more legal
type, where a legal type is either:


	an integer type, with a power-of-two size no larger than the maximum
integer size supported by C on the target,

	a floating-point type supported by the target, or

	a vector type supported by the target.



Obviously, this is target-specific.  The target also specifies a
maximum voluntary integer size.  The legal type sequence only contains
vector types or integer types larger than the maximum voluntary size
when the type was explicit in the input.

Pointers are represented as integers in the legal type sequence.  We
assume there’s never a reason to differentiate them in the ABI as long
as the effect of address spaces on pointer size is taken into account.
If that’s not true, this algorithm should be adjusted.

The result of the algorithm also associates each legal type with an
offset.  This information is sufficient to reconstruct an object in
memory from a series of values and vice-versa.

The algorithm proceeds in two steps.


Typed layouts

First, the type is recursively analyzed to produce a typed layout.
A typed layout associates ranges of bytes with either (1) a legal type
(whose storage size must match the size of the associated byte
range), (2) the special type opaque, or (3) the special type
empty.  Adjacent ranges mapped to opaque or empty can be
combined.

For most of the types in Swift, this process is obvious: they either
correspond to an obvious legal type (e.g. thick metatypes are
pointer-sized integers), or to an obvious sequence of scalars
(e.g. class existentials are a sequence of pointer-sized integers).
Only a few cases remain:


	Integer types that are not legal types should be mapped as opaque.



	Vector types that are not legal types should be broken into smaller
vectors, if their size is an even multiple of a legal vector type,
or else broken into their components.  (This rule may need some
tinkering.)



	Tuples and structs are mapped by merging the typed layouts of the
fields, as padded out to the extents of the aggregate with
empty-mapped ranges.  Note that, if fields do not overlap, this is
equivalent to concatenating the typed layouts of the fields, in
address order, mapping internal padding to empty.  Bit-fields should
map the bits they occupy to opaque.

For example, given the following struct type:

struct FlaggedPair {
  var flag: Bool
  var pair: (MyClass, Float)
}





If Swift performs naive, C-like layout of this structure, and this
is a 64-bit platform, typed layout is mapped as follows:

FlaggedPair.flag := [0: i1,                        ]
FlaggedPair.pair := [       8-15: i64, 16-19: float]
FlaggedPair      := [0: i1, 8-15: i64, 16-19: float]





If Swift instead allocates flag into the spare (little-endian) low
bits of pair.0, the typed layout map would be:

FlaggedPair.flag := [0: i1                   ]
FlaggedPair.pair := [0-7: i64,    8-11: float]
FlaggedPair      := [0-7: opaque, 8-11: float]







	Unions (imported from C) are mapped by merging the typed layouts of
the fields, as padded out to the extents of the aggregate with
empty-mapped ranges.  This will often result in a fully-opaque
mapping.



	Enums are mapped by merging the typed layouts of the cases, as
padded out to the extents of the aggregate with empty-mapped ranges.
A case’s typed layout consists of the typed layout of the case’s
directly-stored payload (if any), merged with the typed layout for
its discriminator.  We assume that checking for a discriminator
involves a series of comparisons of bits extracted from
non-overlapping ranges of the value; the typed layout of a
discriminator maps all these bits to opaque and the rest to empty.

For example, given the following enum type:

enum Sum {
  case Yes(MyClass)
  case No(Float)
  case Maybe
}





If Swift, in its infinite wisdom, decided to lay this out
sequentially, and to use invalid pointer values the class to
indicate that the other cases are present, the layout would look as
follows:

Sum.Yes.payload        := [0-7: i64                ]
Sum.Yes.discriminator  := [0-7: opaque             ]
Sum.Yes                := [0-7: opaque             ]
Sum.No.payload         := [             8-11: float]
Sum.No.discriminator   := [0-7: opaque             ]
Sum.No                 := [0-7: opaque, 8-11: float]
Sum.Maybe              := [0-7: opaque             ]
Sum                    := [0-7: opaque, 8-11: float]





If Swift instead chose to just use a discriminator byte, the layout
would look as follows:

Sum.Yes.payload        := [0-7: i64             ]
Sum.Yes.discriminator  := [            8: opaque]
Sum.Yes                := [0-7: i64,   8: opaque]
Sum.No.payload         := [0-3: float           ]
Sum.No.discriminator   := [            8: opaque]
Sum.No                 := [0-3: float, 8: opaque]
Sum.Maybe              := [            8: opaque]
Sum                    := [0-8: opaque          ]





If Swift chose to use spare low (little-endian) bits in the class
pointer, and to offset the float to make this possible, the layout
would look as follows:

Sum.Yes.payload        := [0-7: i64             ]
Sum.Yes.discriminator  := [0: opaque            ]
Sum.Yes                := [0-7: opaque          ]
Sum.No.payload         := [           4-7: float]
Sum.No.discriminator   := [0: opaque            ]
Sum.No                 := [0: opaque, 4-7: float]
Sum.Maybe              := [0: opaque            ]
Sum                    := [0-7: opaque          ]









The merge algorithm for typed layouts is as follows.  Consider two
typed layouts L and R.  A range from L is said to conflict
with a range from R if they intersect and they are mapped as
different non-empty types.  If two ranges conflict, and either range
is mapped to a vector, replace it with mapped ranges for the vector
elements.  If two ranges conflict, and neither range is mapped to a
vector, map them both to opaque, combining them with adjacent opaque
ranges as necessary.  If a range is mapped to a non-empty type, and
the bytes in the range are all mapped as empty in the other map, add
that range-mapping to the other map.  L and R should now match
perfectly; this is the result of the merge.  Note that this algorithm
is both associative and commutative.




Forming a legal type sequence

Once the typed layout is constructed, it can be turned into a legal
type sequence.

Note that this transformation is sensitive to the offsets of ranges in
the complete type.  It’s possible that the simplifications described
here could be integrated directly into the construction of the typed
layout without changing the results, but that’s not yet proven.

In all of these examples, the maximum voluntary integer size is 4
(i32) unless otherwise specified.

If any range is mapped as a non-empty, non-opaque type, but its start
offset is not a multiple of its natural alignment, remap it as opaque.
For these purposes, the natural alignment of an integer type is the
minimum of its size and the maximum voluntary integer size; the
natural alignment of any other type is its C ABI type.  Combine
adjacent opaque ranges.

For example:

[1-2: i16, 4: i8, 6-7: i16]  ==>  [1-2: opaque, 4: i8, 6-7: i16]





If any range is mapped as an integer type that is not larger than the
maximum voluntary size, remap it as opaque.  Combine adjacent opaque
ranges.

For example:

[1-2: opaque, 4: i8, 6-7: i16]  ==>  [1-2: opaque, 4: opaque, 6-7: opaque]
[0-3: i32, 4-11: i64, 12-13: i16]  ==>  [0-3: opaque, 4-11: i64, 12-13: opaque]





An aligned storage unit is an N-byte-aligned range of N bytes, where
N is a power of 2 no greater than the maximum voluntary integer size.
A maximal aligned storage unit has a size equal to the maximum
voluntary integer size.

Note that any remaining ranges mapped as integers must fully occupy
multiple maximal aligned storage units.

Split all opaque ranges at the boundaries of maximal aligned storage
units.  From this point on, never combine adjacent opaque ranges
across these boundaries.

For example:

[1-6: opaque]  ==> [1-3: opaque, 4-6: opaque]





Within each maximal aligned storage unit, find the smallest aligned
storage unit which contains all the opaque ranges.  Replace the first
opaque range in the maximal aligned storage unit with a mapping from
that aligned storage unit to an integer of the aligned storage unit’s
size.  Remove any other opaque ranges in the maximal aligned storage
unit.  Note that this can create overlapping ranges in some cases.
For this purposes of this calculation, the last maximal aligned
storage unit should be considered “full”, as if the type had an
infinite amount of empty tail-padding.

For example:

[1-2: opaque]  ==>  [0-3: i32]
[0-1: opaque]  ==>  [0-1: i16]
[0: opaque, 2: opaque]  ==>  [0-3: i32]
[0-9: fp80, 10: opaque]  ==>  [0-9: fp80, 10: i8]

// If maximum voluntary size is 8 (i64):
[0-9: fp80, 11: opaque, 13: opaque]  ==>  [0-9: fp80, 8-15: i64]





(This assumes that fp80 is a legal type for illustrative purposes.
It would probably be a better policy for the actual x86-64 target to
consider it illegal and treat it as opaque from the start, at least
when lowering for the Swift calling convention; for C, it is important
to produce an fp80 mapping for ABI interoperation with C functions
that take or return long double by value.)

The final legal type sequence is the sequence of types for the
non-empty ranges in the map.  The associated offset for each type is
the offset of the start of the corresponding range.

Only the final step can introduce overlapping ranges, and this is only
possible if there’s a non-integer legal type which:


	has a natural alignment less than half of the size of the maximum
voluntary integer size or

	has a store size is not a multiple of half the size of the maximum
voluntary integer size.



On our supported platforms, these conditions are only true on x86-64,
and only of long double.






Deconstruction and Reconstruction

Given the address of an object and a legal type sequence for its type,
it’s straightforward to load a valid sequence or store the sequence
back into memory.  For the most part, it’s sufficient to simply load
or store each value at its appropriate offset.  There are two
subtleties:


	If the legal type sequence had any overlapping ranges, the integer
values should be stored first to prevent overwriting parts of the
other values they overlap.

	Care must be taken with the final values in the sequence; integer
values may extend slightly beyond the ordinary storage size of the
argument type.  This is usually easy to compensate for.



The value sequence essentially has the same semantics that the value
in memory would have: any bits that aren’t part of the actual
representation of the original type have a completely unspecified
value.




Forming a C function signature

As mentioned before, in principle the process of physical lowering
turns a semantically-lowered Swift function type (in implementation
terms, a SILFunctionType) into a C function signature, which can then
be lowered according to the usual rules for the ABI.  This is, in
fact, what we do when trying to match a C calling convention.
However, for the native Swift calling convention, because we actively
want to use more aggressive rules for results, we instead build an
LLVM function type directly.  We first construct a direct result type
that we’re certain the backend knows how to interpret according to our
more aggressive desired rules, and then we use the expansion algorithm
to construct a parameter sequence consisting solely of types with
obvious ABI lowering that the backend can reliably handle.  This
bypasses the need to consult Clang for our own native calling
convention.

We have this generic expansion algorithm, but it’s important to
understand that the physical lowering process does not just naively
use the results of this algorithm.  The expansion algorithm will
happily expand an arbitrary structure; if that structure is very
large, the algorithm might turn it into hundreds of values.  It would
be foolish to pass it as an argument that way; it would use up all the
argument registers and basically turn into a very inefficient memcpy,
and if the caller wanted it all in one place, they’d have to very
painstakingly reassemble.  It’s much better to pass large structures
indirectly.  And with result values, we really just don’t have a
choice; there’s only so many registers you can use before you have to
give up and return indirectly.  Therefore, even in the Swift native
convention, the expansion algorithm is basically used as a first pass.
A second pass then decides whether the expanded sequence is actually
reasonable to pass directly.

Recall that one aspect of the semantically-lowered Swift function type
is whether we should be matching the C calling convention or not.  The
following algorithm here assumes that the importer and semantic
lowering have conspired in a very particular way to make that
possible.  Specifically, we assume is that an imported C function
type, lowered semantically by Swift, will follow some simple
structural rules:


	If there was a by-value struct or union parameter or result in
the imported C type, it will correspond to a by-value direct
parameter or return type in Swift, and the Swift type will be a
nominal type whose declaration links back to the original C
declaration.

	Any other parameter or result will be transformed by the importer
and semantic lowering to a type that the generic expansion algorithm
will expand to a single legal type whose representation is
ABI-compatible with the original parameter.  For example, an
imported pointer type will eventually expand to an integer of
pointer size.

	There will be at most one result in the lowered Swift type, and it
will be direct.



Given this, we go about lowering the function type as follows.  Recall
that, when matching the C calling convention, we’re building a C
function type; but that when matching the Swift native calling
convention, we’re building an LLVM function type directly.


Results

The first step is to consider the results of the function.

There’s a different set of rules here when we’re matching the C
calling convention.  If there’s a single direct result type, and it’s
a nominal type imported from Clang, then the result type of the C
function type is that imported Clang type.  Otherwise, concatenate the
legal type sequences from the direct results.  If this yields an empty
sequence, the result type is void.  If it yields a single legal
type, the result type is the corresponding Clang type.  No other could
actually have come from an imported C declaration, so we don’t have
any real compatiblity requirements; for the convenience of
interoperation, this is handled by constructing a new C struct which
contains the corresponding Clang types for the legal type sequence as
its fields.

Otherwise, we are matching the Swift calling convention.  Concatenate
the legal type sequences from all the direct results.  If
target-specific logic decides that this is an acceptable collection to
return directly, construct the appropriate IR result type to convince
the backend to handle it.  Otherwise, use the void IR result type
and return the “direct” results indirectly by passing the address of a
tuple combining the original direct results (not the types from the
legal type sequence).

Finally, any indirect results from the semantically-lowered function
type are simply added as pointer parameters.




Parameters

After all the results are collected, it’s time to collect the
parameters.  This is done one at the time, from left to right, adding
parameters to our physically-lowered type.

If semantic lowering has decided that we have to pass the parameter
indirectly, we simply add a pointer to the type.  This covers both
mandatory-indirect pass-by-value parameters and pass-by-reference
parameters.  The latter can arise even in C and Objective-C.

Otherwise, the rules are somewhat different if we’re matching the C
calling convention.  If the parameter is a nominal type imported from
Clang, then we just add the imported Clang type to the Clang function
type as a parameter.  Otherwise, we derive the legal type sequence for
the parameter type.  Again, we should only have compatibility
requirements if the legal type sequence has a single element, but for
the convenience of interoperation, we collect the corresponding Clang
types for all of the elements of the sequence.

Finally, if we’re matching the Swift calling convention, derive the
legal type sequence.  If the result appears to be a reasonably small
and efficient set of parameters, add their corresponding IR types to
the function type we’re building; otherwise, ignore the legal type
sequence and pass the address of the original type indirectly.

Considerations for whether a legal type sequence is reasonable to pass
directly:


	There probably ought to be a maximum size.  Unless it’s a single
256-bit vector, it’s hard to imagine wanting to pass more than, say,
32 bytes of data as individual values.  The callee may decide that
it needs to reconstruct the value for some reason, and the larger
the type gets, the more expensive this is.  It may also be
reasonable for this cap to be lower on 32-bit targets, but that
might be dealt with better by the next restriction.

	There should also be a cap on the number of values.  A 32-byte limit
might be reasonable for passing 4 doubles.  It’s probably not
reasonable for passing 8 pointers.  That many values will exhaust
all the parameter registers for just a single value.  4 is probably
a reasonable cap here.

	There’s no reason to require the data to be homogeneous.  If a
struct contains three floats and a pointer, why force it to be
passed in memory?



When all of the parameters have been processed in this manner,
the function type is complete.













          

      

      

    

  

    
      
          
            
  
Literals

What happens when a literal expression is used?

The complicated case is for integer, floating-point, character, and string
literals, so let’s look at those.


High-Level View

window.setTitle("Welcome to Xcode")





In this case, we have a string literal and an enclosing context. If window
is an NSWindow, there will only be one possible method named setTitle,
which takes an NSString. Therefore, we want the string literal expression to
end up being an NSString.

Fortunately, NSString implements StringLiteralConvertible, so the type checker
will indeed be able to choose NSString as the type of the string literal. All
is well.

In the case of integers or floating-point literals, the value effectively has
infinite precision. Once the type has been chosen, the value is checked to see
if it is in range for that type.




The StringLiteralConvertible Protocol

Here is the StringLiteralConvertible protocol as defined in the standard
library’s Policy.swift:

// NOTE: the compiler has builtin knowledge of this protocol
protocol StringLiteralConvertible {
  typealias StringLiteralType : _BuiltinStringLiteralConvertible
  class func convertFromStringLiteral(value : StringLiteralType) -> Self
}





Curiously, the protocol is not defined in terms of primitive types, but in
terms of any StringLiteralType that the implementer chooses. In most cases,
this will be Swift’s own native String type, which means users can implement
their own StringLiteralConvertible types while still dealing with a high-level
interface.

(Why is this not hardcoded? A String must be a valid Unicode string, but
if the string literal contains escape sequences, an invalid series of code
points could be constructed...which may be what’s desired in some cases.)




The _BuiltinStringLiteralConvertible Protocol

Policy.swift contains a second protocol:

// NOTE: the compiler has builtin knowledge of this protocol
protocol _BuiltinStringLiteralConvertible {
  class func _convertFromBuiltinStringLiteral(value : Builtin.RawPointer,
                                              byteSize : Builtin.Int64,
                                              isASCII: Builtin.Int1) -> Self
}





The use of builtin types makes it clear that this is only for use in the
standard library. This is the actual primitive function that is used to
construct types from string literals: the compiler knows how to emit raw
data from the literal, and the arguments describe that raw data.

So, the general runtime behavior is now clear:


	The compiler generates raw string data.

	Some type conforming to _BuiltinStringLiteralConvertible is constructed from
the raw string data. This will be a standard library type.

	Some type conforming to StringLiteralConvertible is constructed from the
object constructed in step 2. This may be a user-defined type. This is the
result.






The Type-Checker’s Algorithm

In order to make this actually happen, the type-checker has to do some fancy
footwork. Remember, at this point all we have is a string literal and an
expected type; if the function were overloaded, we would have to try all the
types.

This algorithm can go forwards or backwards, since it’s actually defined in
terms of constraints, but it’s easiest to understand as a linear process.


	Filter the types provided by the context to only include those that are
StringLiteralConvertible.

	Using the associated StringLiteralType, find the appropriate
_convertFromBuiltinStringLiteral.

	Using the type from step 1, find the appropriate
convertFromStringLiteral.

	Build an expression tree with the appropriate calls.



How about cases where there is no context?

var str = "abc"





Here we have nothing to go on, so instead the type checker looks for a global
type named StringLiteralType in the current module-scope context, and uses
that type if it is actually a StringLiteralConvertible type. This both allows
different standard libraries to set different default literal types, and allows
a user to override the default type in their own source file.

The real story is even more complicated because of implicit conversions:
the type expected by setTitle might not actually be literal-convertible,
but something else that is literal-convertible can then implicitly convert
to the proper type. If this makes your head spin, don’t worry about it.




Arrays, Dictionaries, and Interpolation

Array and dictionary literals don’t have a Builtin*Convertible form. Instead,
they just always use a variadic list of elements (T...) in the array case
and (key, value) tuples in the dictionary case. A variadic list is always
exposed using the standard library’s Array type, so there is no separate step
to jump through.

The default array literal type is always Array, and the default dictionary
literal type is always Dictionary.

String interpolations are a bit different: they try to individually convert
each element of the interpolation to the type that adopts
StringInterpolationConvertible, then calls the variadic
convertFromStringInterpolation to put them all together. The default type
for an interpolated literal without context is also StringLiteralType.







          

      

      

    

  

    
      
          
            
  
Swift Binary Serialization Format

The fundamental unit of distribution for Swift code is a module. A module
contains declarations as an interface for clients to write code against. It may
also contain implementation information for any of these declarations that can
be used to optimize client code. Conceptually, the file containing the
interface for a module serves much the same purpose as the collection of C
header files for a particular library.

Swift’s binary serialization format is currently used for several purposes:


	The public interface for a module (“swiftmodule files”).

	A representation of captured compiler state after semantic analysis and SIL
generation, but before LLVM IR generation (“SIB”, for “Swift Intermediate
Binary”).

	Debug information about types, for proper high-level introspection without
running code.

	Debug information about non-public APIs, for interactive debugging.



The first two uses require a module to serve as a container of both AST nodes
and SIL entities. As a unit of distribution, it should also be
forward-compatible: module files installed on a developer’s system in 201X
should be usable without updates for years to come, even as the Swift compiler
continues to be improved and enhanced. However, they are currently too closely
tied to the compiler internals to be useful for this purpose, and it is likely
we’ll invent a new format instead.


Why LLVM bitcode?

The LLVM bitstream [http://llvm.org/docs/BitCodeFormat.html] format was
invented as a container format for LLVM IR. It is a binary format supporting
two basic structures: blocks, which define regions of the file, and
records, which contain data fields that can be up to 64 bits. It has a few
nice properties that make it a useful container format for Swift modules as
well:


	It is easy to skip over an entire block, because the block’s length is
recorded at its start.

	It is possible to jump to specific offsets within a block without having to
reparse from the start of the block.

	A format change doesn’t immediately invalidate existing bitstream files,
because the stream includes layout information for each record.

	It’s a binary format, so it’s at least somewhat compact. [I haven’t done a
size comparison against other formats.]



If we were to switch to another container format, we would likely want it to
have most of these properties as well. But we’re already linking against
LLVM...might as well use it!




Versioning


Warning

This section is relevant to any forward-compatible format used for a
library’s public interface. However, as mentioned above this may not be
the current binary serialization format.

Today’s Swift uses a “major” version number of 0 and an always-incrementing
“minor” version number. Every change is treated as compatibility-breaking;
the minor version must match exactly for the compiler to load the module.



Persistent serialized Swift files use the following versioning scheme:


	Serialized modules are given a major and minor version number.

	When making a backwards-compatible change, the major and the minor version
number both MUST NOT be incremented.

	When making a change such that new modules cannot be safely loaded by older
compilers, the minor version number MUST be incremented.

	When making a change such that old modules cannot be safely loaded by
newer compilers, the major version number MUST be incremented. The minor
version number MUST then be reset to zero.

	Ideally, the major version number is never incremented.



A serialized file’s version number is checked against the client’s supported
version before it is loaded. If it is too old or too new, the file cannot be
loaded.

Note that the version number describes the contents of the file. Thus, if a
compiler supports features introduced in file version 1.9, but a particular
module only uses features introduced before and in version 1.7, the compiler
MAY serialize that module with the version number 1.7. However, doing so
requires extra work on the compiler’s part to detect which features are in use;
a simpler implementation would just use the latest version number supported:
1.9.

This versioning scheme was inspired by Semantic Versioning [http://semver.org]. However, it is not compatible with Semantic Versioning
because it promises forward-compatibility rather than backward-compatibility.




A High-Level Tour of the Current Module Format

Every serialized module is represented as a single block called the “module
block”. The module block is made up of several other block kinds, largely for
organizational purposes.


	The block info block is a standard LLVM bitcode block that contains
metadata about the bitcode stream. It is the only block that appears outside
the module block; we always put it at the very start of the file. Though it
can contain actual semantic information, our use of it is only for debugging
purposes.

	The control block is always the first block in the module block. It can
be processed without loading the rest of the module, and indeed is intended
to allow clients to decide whether not the module is compatible with the
current AST context. The major and minor version numbers of the format are
stored here.

	The input block contains information about how to import the module once
the client has decided to load it. This includes the list of other modules
that this module depends on.

	The SIL block contains SIL-level implementations that can be imported
into a client’s SILModule context. In most cases this is just a performance
concern, but sometimes it affects language semantics as well, as in the case
of @_transparent. The SIL block precedes the AST block because it affects
which AST nodes get serialized.

	The SIL index black contains tables for accessing various SIL entities by
their names, along with a mapping of unique IDs for these to the appropriate
bit offsets into the SIL block.

	The AST block contains the serialized forms of Decl, DeclContext, and
Type AST nodes. Decl nodes may be cross-references to other modules, while
types are always serialized with enough info to regenerate them at load time.
Nodes are accessed by a file-unique “DeclIDs” (also covering DeclContexts)
and “TypeIDs”; the two sets of IDs use separate numbering schemes.




Note

The AST block is currently referred to as the “decls block” in the source.




	The identifier block contains a single blob of strings. This is intended
for Identifiers—strings uniqued by the ASTContext—but can in theory
support any string data. The strings are accessed by a file-unique
“IdentifierID”.

	The index block contains mappings from the AST node and identifier IDs to
their offsets in the AST block or identifier block (as appropriate). It also
contains various top-level AST information about the module, such as its
top-level declarations.






SIL

[to be written]




Cross-reference resilience

[to be written]







          

      

      

    

  

    
      
          
            
  
The Swift Array Design
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Goals


	Performance equivalent to C arrays for subscript get/set of
non-class element types is the most important performance goal.

	It should be possible to receive an NSArray from Cocoa,
represent it as an Array<AnyObject>, and pass it right back to
Cocoa as an NSArray in O(1) and with no memory allocations.

	Arrays should be usable as stacks, so we want amortized O(1) append
and O(1) popBack.  Together with goal #1, this implies a
std::vector-like layout, with a reserved tail memory capacity
that can exceed the number of actual stored elements.



To achieve goals 1 and 2 together, we use static knowledge of the
element type: when it is statically known that the element type is not
a class, code and checks accounting for the possibility of wrapping an
NSArray are eliminated.  An Array of Swift value types always
uses the most efficient possible representation, identical to that of
ContiguousArray.




Components

Swift provides three generic array types, all of which have amortized
O(1) growth.  In this document, statements about ArrayType apply
to all three of the components.


	ContiguousArray<T> is the fastest and simplest of the three—use this
when you need “C array” performance.  The elements of a
ContiguousArray are always stored contiguously in memory.

[image: _images/ContiguousArray.png]


	Array<T> is like ContiguousArray<T>, but optimized for efficient
conversions from Cocoa and back—when T can be a class type,
Array<T> can be backed by the (potentially non-contiguous)
storage of an arbitrary NSArray rather than by a Swift
ContiguousArray.  Array<T> also supports up- and down- casts
between arrays of related class types.  When T is known to be a
non-class type, the performance of Array<T> is identical to that
of ContiguousArray<T>.

[image: _images/ArrayImplementation.png]


	Slice<T> is a subrange of some Array<T> or
ContiguousArray<T>; it’s the result of using slice notation,
e.g. a[7...21] on any Swift array a.  A slice always has
contiguous storage and “C array” performance.  Slicing an
ArrayType is O(1) unless the source is an Array<T> backed by
an NSArray that doesn’t supply contiguous storage.

Slice is recommended for transient computations but not for
long-term storage.  Since it references a sub-range of some shared
backing buffer, a Slice may artificially prolong the lifetime of
elements outside the Slice itself.

[image: _images/Slice.png]







Mutation Semantics

The ArrayTypes have full value semantics via copy-on-write (COW):

var a = [1, 2, 3]
let b = a
a[1] = 42
print(b[1]) // prints "2"








Bridging Rules and Terminology for all Types


	Every class type or @objc existential (such as AnyObject) is
bridged to Objective-C and bridged back to Swift via the
identity transformation, i.e. it is bridged verbatim.



	A type T that is not bridged verbatim can conform to
BridgedToObjectiveC, which specifies its conversions to and from
ObjectiveC:

protocol _BridgedToObjectiveC {
  typealias _ObjectiveCType: AnyObject
  func _bridgeToObjectiveC() -> _ObjectiveCType
  class func _forceBridgeFromObjectiveC(_: _ObjectiveCType) -> Self
}






Note

classes and @objc existentials shall not conform to
_BridgedToObjectiveC, a restriction that’s not currently
enforceable at compile-time.





	Some generic types (ArrayType<T> in particular) bridge to
Objective-C only if their element types bridge.  These types conform
to _ConditionallyBridgedToObjectiveC:

protocol _ConditionallyBridgedToObjectiveC : _BridgedToObjectiveC {
  class func _isBridgedToObjectiveC() -> Bool
  class func _conditionallyBridgeFromObjectiveC(_: _ObjectiveCType) -> Self?
}





Bridging from, or bridging back to, a type T conforming to
_ConditionallyBridgedToObjectiveC when
T._isBridgedToObjectiveC() is false is a user programming
error that may be diagnosed at
runtime. _conditionallyBridgeFromObjectiveC can be used to attempt
to bridge back, and return nil if the entire object cannot be
bridged.


Implementation Note

There are various ways to move this detection to compile-time





	For a type T that is not bridged verbatim,


	if T conforms to BridgedToObjectiveC and either


	T does not conform to _ConditionallyBridgedToObjectiveC

	or, T._isBridgedToObjectiveC()



then a value x of type T is bridged as
T._ObjectiveCType via x._bridgeToObjectiveC(), and an object
y of T._ObjectiveCType is bridged back to T via
T._forceBridgeFromObjectiveC(y)



	Otherwise, T does not bridge to Objective-C












Array Type Conversions

From here on, this document deals only with Array itself, and not
Slice or ContiguousArray, which support a subset of Array‘s conversions.  Future revisions will add descriptions of Slice
and ContiguousArray conversions.


Kinds of Conversions

In these definitions, Base is AnyObject or a trivial subtype
thereof, Derived is a trivial subtype of Base, and X
conforms to _BridgedToObjectiveC:


	Trivial bridging implicitly converts Base[] to
NSArray in O(1). This is simply a matter of returning the
Array’s internal buffer, which is-a NSArray.




	Trivial bridging back implicitly converts NSArray to
AnyObject[] in O(1) plus the cost of calling copy() on
the NSArray. [1]



	Implicit conversions between Array types


	Implicit upcasting implicitly converts Derived[] to
Base[] in O(1).

	Implicit bridging implicitly converts X[] to
X._ObjectiveCType[] in O(N).




Note

Either type of implicit conversion may be combined with
trivial bridging in an implicit conversion to NSArray.





	Checked conversions convert T[] to U[]? in O(N)
via a as U[].


	Checked downcasting converts Base[] to Derived[]?.

	Checked bridging back converts T[] to X[]? where
X._ObjectiveCType is T or a trivial subtype thereof.





	Forced conversions convert AnyObject[] or NSArray to
T[] implicitly, in bridging thunks between Swift and Objective-C.

For example, when a user writes a Swift method taking NSView[],
it is exposed to Objective-C as a method taking NSArray, which
is force-converted to NSView[] when called from Objective-C.


	Forced downcasting converts AnyObject[] to Derived[] in
O(1)

	Forced bridging back converts AnyObject[] to X[] in O(N).



A forced conversion where any element fails to convert is considered
a user programming error that may trap.  In the case of forced
downcasts, the trap may be deferred to the point where an offending
element is accessed.






Note

Both checked and forced downcasts may be combined with trivial
bridging back in conversions from NSArray.






Maintaining Type-Safety

Both upcasts and forced downcasts raise type-safety issues.


Upcasts

TODO: this section is outdated.

When up-casting an Derived[] to Base[], a buffer of
Derived object can simply be unsafeBitCast‘ed to a buffer
of elements of type Base—as long as the resulting buffer is never
mutated.  For example, we cannot allow a Base element to be
inserted in the buffer, because the buffer’s destructor will destroy
the elements with the (incorrect) static presumption that they have
Derived type.

Furthermore, we can’t (logically) copy the buffer just prior to
mutation, since the Base[] may be copied prior to mutation,
and our shared subscript assignment semantics imply that all copies
must observe its subscript assignments.

Therefore, converting T[] to U[] is akin to
resizing: the new Array becomes logically independent.  To avoid
an immediate O(N) conversion cost, and preserve shared subscript
assignment semantics, we use a layer of indirection in the data
structure.  Further, when T is a subclass of U, the
intermediate object is marked to prevent in-place mutation of the
buffer; it will be copied upon its first mutation:

[image: _images/ArrayCast.png]



Deferrred Checking for Forced Downcasts

In forced downcasts, if any element fails to have dynamic type Derived,
it is considered a programming error that may cause a trap.  Sometimes
we can do this check in O(1) because the source holds a known buffer
type.  Rather than incur O(N) checking for the other cases, the new
intermediate object is marked for deferred checking, and all element
accesses through that object are dynamically typechecked, with a trap
upon failure (except in -Ounchecked builds).

When the resulting array is later up-cast (other than to a type that
can be validated in O(1) by checking the type of the underlying
buffer), the result is also marked for deferred checking.






	[1]	This copy() may amount to a retain if the NSArray
is already known to be immutable.  We could eventually optimize out
the copy if we can detect that the NSArray is uniquely
referenced.  Our current unique-reference detection applies only to
Swift objects, though.














          

      

      

    

  

    
      
          
            
  
Warning

This document represents an early proposal for import syntax and
has not been kept up to date.




IMPORT SYNTAX

import-decl ::= 'import' import-item-list
import-item-list ::= import-item (',' import-item)*

import-item ::= import-kind? identifier-path
import-item ::= identifier-path '.' '(' import-item-list ')'

import-kind ::= 'module'

import-kind ::= 'class'
import-kind ::= 'enum'
import-kind ::= 'func'
import-kind ::= 'protocol'
import-kind ::= 'struct'
import-kind ::= 'typealias'
import-kind ::= 'var'
// ...





import makes declarations exported from another module available inside
the current module. Imports are not reexported by default.


Importing Modules

In its simplest form, import gives the qualified name of a module and
imports all exported symbols from the module, as well as the module name itself
for qualified lookup:

import Cocoa

// Reference the NSArray type from Cocoa
var a1 : NSArray
// Same, but qualified
var a2 : Cocoa.NSArray





In this form, the qualified name must refer to a module:

// Import the Cocoa.NSWindow module, *not* the NSWindow class from inside
// Cocoa
import Cocoa.NSWindow

// Reference the NSWindow type from Cocoa.NSWindow
var w1 : NSWindow
// Same, but qualified
var w2 : Cocoa.NSWindow.NSWindow





Multiple modules may appear in a comma-separated list:

import Foundation, iAd, CoreGraphics





As a shorthand, multiple submodules with a common parent module may be listed
in parens under the parent module:

import OpenGL.(GL3, GL3.Ext)








Importing Individual Declarations

Instead of importing the entire contents of a module, individual declarations
may be imported. This is done by naming the kind of declaration being imported
before the qualified name, such as func, var, or class. The module
name is still imported for qualified lookup of other symbols:

// Import only the Cocoa.NSWindow class
import class Cocoa.NSWindow

var w1 : NSWindow
var title : Cocoa.NSString





As with modules, multiple declarations may be imported in a comma-separated
list, or imported out of a common parent module with a parenthesized list:

import func OpenGL.GL3.glDrawArrays, func OpenGL.GL3.Ext.glTextureRangeAPPLE
// Equivalent
import OpenGL.GL3.(func glDrawArrays, func Ext.glTextureRangeAPPLE)










RESOLVING NAME CLASHES


Module imports

Because the local names introduced by a whole-module import are implicit,
a name clash between imported modules is not an error unless a clashing name is
actually used without qualification:

import abcde // abcde exports A, B, C, D, E
import aeiou // aeiou exports A, E, I, O, U

var b : B // OK, references abcde.B
var i : I // OK, references aeiou.I
var e : E // Error, ambiguous
var e : abcde.E // OK, qualified reference to abcde.E





Conflicts are resolved in favor of individually imported or
locally defined declarations when available:

import abcde         // abcde exports A, B, C, D, E
import aeiou         // aeiou exports A, E, I, O, U
import class asdf.A  // explicitly import A from some other module
import class abcde.E // explicitly import E from abcde

class U { } // Local class shadows whole-module import

var a : A // OK, references asdf.A
var e : E // OK, references abcde.E
var u : U // OK, references local U








Declaration imports

Individual declaration imports shadow whole-module imports, as described above.
If two declarations with the same name are invidually imported from different
modules, references to either import must be qualified:

import class abcde.E
import class aeiou.E

var e : E        // Error, ambiguous
var e1 : abcde.E // OK





A local definition with the same name as an explicitly imported symbol
shadows the unqualified import:

import class abcde.E

class E { }

var e : E       // Refers to local E
var e : abcde.E // Refers to abcde.E








Module names

FIXME: What is a good rule here? This sucks.

If a module name clashes with a local definition or imported declaration, the
declaration is favored in name lookup. If a member lookup into the declaration
fails, we fall back to qualified lookup into the module:

import Foo // exports bas

class Foo {
  class func bar()
}

Foo.bar() // bar method from Foo class
Foo.bas() // bas method from Foo module










FUTURE EXTENSIONS

In the future, we should allow the import declaration to provide an alias
for the imported module or declaration:

import C = Cocoa
import NSW = class Cocoa.NSWindow
import Cocoa.(NSW = class NSWindow, NSV = class NSView)









          

      

      

    

  

    
      
          
            
  
ARC Optimization for Swift
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TODO

This is currently a place holder for design documentation on ARC
optimization.




Reference Counting Instructions


	strong_retain

	strong_retain_autoreleased

	strong_release

	strong_retain_unowned

	unowned_retain

	unowned_release

	load_weak

	store_weak

	fix_lifetime

	mark_dependence

	is_unique

	is_unique_or_pinned

	copy_block






Memory Behavior of ARC Operations

At SIL level, reference counting and reference checking instructions
are attributed with MayHaveSideEffects to prevent arbitrary passes
from reordering them.

At IR level, retains are marked NoModRef with respect to load and
store instructions so they don’t pessimize memory dependence. (Note
the Retains are still considered to write to memory with respect to
other calls because getModRefBehavior is not overridden.) Releases
cannot be marked NoModRef because they can have arbitrary side
effects. Is_unique calls cannot be marked NoModRef because they cannot
be reordered with other operations that may modify the reference
count.


TODO

Marking runtime calls with NoModRef in LLVM is misleading (they
write memory), inconsistent (getModRefBehavior returns Unknown),
and fragile (e.g. if we inline ARC operations at IR level). To be
robust and allow stronger optimization, TBAA tags should be used to
indicate functions that only access object metadata. This would
also enable more LLVM level optimization in the presence of
is_unique checks which currently appear to arbitrarily write memory.






RC Identity

A core ARC concept in Swift optimization is the concept of Reference Count
Identity (RC Identity) and RC Identity preserving instructions. An instruction
I with n SSA arguments and m SSA results is (i,j) RC Identity preserving if
performing a retain_value on the ith SSA argument immediately before I
is executed is equivalent to performing a retain_value on the jth SSA result
of I immediately following the execution of I. For example in the
following, if:

retain_value %x
%y = unary_instruction %x





is equivalent to:

%y = unary_instruction %x
retain_value %y





then we say that unary_instruction is a (0,0) RC Identity preserving
operation. In a case of a unary instruction, we omit (0,0) and just say that
the instruction is RC Identity preserving.

In practice generally RC Identical operations are unary operations such as
casts. This would make it seem like RC Identity is an extension of alias
analysis. But RC Identity also has significantly more power than alias analysis
since:



	struct is an RC identity preserving operation if the struct literal
only has one non-trivial operand. This means for instance that any struct with
one reference counted field used as an owning pointer is RC Identical with its
owning pointer (a useful property for Arrays).

	An enum instruction is always RC Identical with the given tuple payload.

	A tuple instruction is an RC identity preserving operation if the
tuple literal has one non-trivial operand.

	init_class_existential is an RC identity preserving operation since
performing a retain_value on a class existential is equivalent to performing
a retain_value on the class itself.






The corresponding value projection operations have analogous properties.

Given two SSA values %a, %b, we define %a as immediately RC
identical to %b if there exists an instruction I such that:


	%a is the jth result of I.

	%b is the ith argument of I.

	I is (i,j) RC identity preserving.



Easily the immediate RC identical relation must be reflexive and symmetric but
by its nature is not transitive. Then define the equivalence relation RC
Identity, ~rc, by the relations that %a ~rc %b if %a is immediately
RC identical to %b or if there is a finite sequence of n SSA values
{%a[i]} such that %a is immediately RC identical to %a[0] and %b
is immediately RC identical to %a[n]. We currently always assume that each
equivalence class has one dominating definition.

These equivalence classes consisting of chains of RC identical values are
computed via the SILAnalysis called RC Identity Analysis. By performing ARC
optimization on RC Identical operations, our optimizations are able to operate
on the level of granularity that we actually care about, ignoring superficial
changes in SSA form that still yield manipulations of the same reference count.


	NOTE RCIdentityAnalysis is a flow insensitive analysis. Dataflow that needs to

	be flow sensitive must handle phi nodes in the dataflow itself.



NOTE An important consequence of RC Identity is that value types with only one
RCIdentity are a simple case for ARC optimization to handle. The ARC optimizer
relies on other optimizations like SROA, Function Signature Opts, and
SimplifyCFG (for block arguments) to try and eliminate cases where value types
have multiple reference counted subtypes.




Copy-On-Write Considerations

The copy-on-write capabilities of some data structures, such as Array
and Set, are efficiently implemented via Builtin.isUnique calls which
lower directly to is_unique instructions in SIL.

The is_unique instruction takes the address of a reference, and
although it does not actually change the reference, the reference must
appear mutable to the optimizer. This forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference’s source-level copies, because the called function is
allowed to replace the reference, thereby releasing the
referent. Consider the following sequence of rules:


	An operation taking the address of a variable is allowed to
replace the reference held by that variable. The fact that
is_unique will not actually replace it is opaque to the optimizer.

	If the refcount is 1 when the reference is replaced, the referent
is deallocated.

	A different source-level variable pointing at the same referent
must not be changed/invalidated by such a call

	If such a variable exists, the compiler must guarantee the
refcount is > 1 going into the call.



With the is_unique instruction, the variable whose reference is being
checked for uniqueness appears mutable at the level of an individual
SIL instruction. After IRGen, is_unique instructions are expanded into
runtime calls that no longer take the address of the
variable. Consequently, LLVM-level ARC optimization must be more
conservative. It must not remove retain/release pairs of this form:

retain X
retain X
_swift_isUniquelyReferenced(X)
release X
release X





To prevent removal of the apparently redundant inner retain/release
pair, the LLVM ARC optimizer should model _swift_isUniquelyReferenced
as a function that may release X, use X, and exit the program (the
subsequent release instruction does not prove safety).


is_unique instruction

As explained above, the SIL-level is_unique instruction enforces the
semantics of uniqueness checks in the presence of ARC
optimization. The kind of reference count checking that
is_unique performs depends on the argument type:



	Native object types are directly checked by reading the strong
reference count:
(Builtin.NativeObject, known native class reference)

	Objective-C object types require an additional check that the
dynamic object type uses native swift reference counting:
(Builtin.UnknownObject, unknown class reference, class existential)

	Bridged object types allow the dynamic object type check to be
bypassed based on the pointer encoding:
(Builtin.BridgeObject)






Any of the above types may also be wrapped in an optional.  If the
static argument type is optional, then a null check is also performed.

Thus, is_unique only returns true for non-null, native swift object
references with a strong reference count of one.

is_unique_or_pinned has the same semantics as is_unique except that it
also returns true if the object is marked pinned (by strong_pin)
regardless of the reference count. This allows for simultaneous
non-structural modification of multiple subobjects.




Builtin.isUnique

Builtin.isUnique and Builtin.isUniqueOrPinned give the standard
library access to optimization safe uniqueness checking. Because the
type of reference check is derived from the builtin argument’s static
type, the most efficient check is automatically generated. However, in
some cases, the standard library can dynamically determine that it has
a native reference even though the static type is a bridge or unknown
object. Unsafe variants of the builtin are available to allow the
additional pointer bit mask and dynamic class lookup to be bypassed in
these cases:


	isUnique_native : <T> (inout T[?]) -> Int1

	isUniqueOrPinned_native : <T> (inout T[?]) -> Int1



These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.









          

      

      

    

  

    
      
          
            
  
Git Workflows


Purpose

Swift development has been based on SVN since its inception.  As part of the
transition to Git this document helps to address questions about how common SVN
workflows we use today translate to their Git counterparts as well as to discuss
Git workflow practices we plan on having — at least initially — after the Git
transition.  Notably we will follow a model where commits to trunk — which is
the ‘master’ branch in Git — has commits land (in the common case) via rebasing
instead of merging.  This model is open to evolution later, but this mimics the
workflow we have today with SVN.






SVN -> GIT Workflows

The general SVN workflow consists of the following commands:


	Checkout: This means checking out/setting up a new repository.

	Update: Pulling the latest remote changes into a local repository.

	Commiting: Committing a change to the remote repository.

	Reverting: Reverting a change from a remote repository.

	Browsing: Looking at commits.



This document will show how to translate these commands to Git and additionally
how to configure Git. It assumes that one is attempting to manipulate a Git
repository via bash in a terminal. A lot of information since this is supposed
to be a short, actionable guide. For more information, please see the Git crash
course guide for SVN users at <https://git-scm.com/course/SVN.html>


	NOTE When ever when we say the Swift repository we mean any repository in the

	Swift project.




Quicksetup (TLDR)

For those who do not want to read the full document, use the following commands
to perform a simple repo setup for the Swift repository:

$ git config --global user.name "<My Name>"
$ git config --global user.email "<My Email>"
$ mkdir swift-source && cd swift-soure
$ git clone <LLVM_REPO_URL>
$ git clone <CLANG_REPO_URL>
$ git clone <SWIFT_REPO_URL>
$ (cd swift && git config branch.autosetuprebase always)
$ git clone <CMARK_REPO_URL>
$ git clone <NINJA_REPO_URL>





Then to commit a new commit to the remote swift repository:

$ git commit
$ git push origin master





and to pull new commits from the remote swift repository:

$ git pull origin master





In order to ease updating all repositories, consider using the script in
‘./utils/update-checkout’. This will automate updating the repositories in the
proper way.




Preliminary

Before beginning, we need to perform some global configuration of Git. Git
includes a username/email of the committer in every commit. By default this is
the current logged in user and the hostname of the machine. This is /not/ what
one wants. We configure Git globally (i.e. across all repositories) to have our
proper name and email by running the following commands:

$ git config --global user.name "<My Name>"
$ git config --global user.email "<My Email>"








Checkout

Normally if one wishes to checkout a repository in SVN, one would use a command
like this:

$ SVN co <repository url> <local directory>





This would then checkout the latest revision from the repository specified by
‘repository url’ and place it into the directory ‘local directory’. In Git,
instead of checking out the repository, one clones the repository. This is done
as follows:

$ git clone <repository url> <local directory>





This will cause Git to clone the repository at ‘repository url’ and check out
the ‘master’ branch. The ‘master’ branch corresponds to ‘trunk’ in SVN. For more
information about branching in Git please see
<https://git-scm.com/course/SVN.html#branch>

Before beginning to commit though, we /must/ perform some default configuration
of our repository to match the Swift repository default configuration by
enabling default rebasing.




Repository Configuration (Enabling Default Rebasing)

Once we have cloned the repository, we need to configure the repository for our
use. Specifically we want to configure the swift repository so that we rebase
whenever we update the repository (see the update section below for more
details):

$ git config branch.autosetuprebase always





By default when updating, Git will attempt to merge the remote changes and your
local changes. Ignoring what that sentence means, this is not an SVN-esque
model. Instead we want any local changes that we have to be applied on top of
any new remote changes. The ‘branch.autosetuprebase’ flag causes this to be done
automatically when ever one updates the local repository.




Update

In SVN, one updates your local repository by running the update command:

$ SVN update





In Git, instead of performing SVN update, one pulls from the remote repository:

$ git pull --rebase origin master





This will pull any new remote commits into your local repository and then replay
your current local commits ontop of those new commits.

By default the ‘–rebase’ flag is not necessary for the Swift repository because
it is configured to always rebase by setting the ‘branch.autosetuprebase’ flag
(see the section ‘Repository Configuration (Enabling Default Rebasing)’ above).




Commit

In SVN, committing always means submitting changes to a remote repository. In
Git, committing refers to the process of first telling Git to track a change by
staging the change and then commiting all staged changes into a change in the
local repository. One can have many such commits. Then when one is ready, one
pushes the new local changes to the remote repository. We go through these steps
in more detail below:

In terms of replicating the SVN model, there are now two steps. In order to
commit changes one first stages a changed file using ‘git add’:

$ git add <path>





Then once all changes that you want to be apart of the commit have been staged,
a commit is created in the local repository via the ‘commit’ command:

$ git commit





As a shortcut to commit /all/ changes to local files that are already being
tracked by Git to the local repository, you can use the ‘-a’ command:

$ git commit -a





In both of these cases, an editor will pop up to accept a commit message. To
specify a short commit message at the commandline, you can use the ‘-m’ flag:

$ git commit -m 'My great commit message.'





In order to see the diff of changes that have not been staged, run the command:

$ git diff





To see all changes that have been staged, run the command:

$ git diff --staged





To get a diff for a specific revision/path, perform the following command:

$ git diff <revision> <path>





In order to get a more concise view of the files that have staged and or
unstaged changes, run the command:

$ git status





In order to restore a file from the last revision, one uses the checkout
command:

$ git checkout <path>





To restore a file to a specific revision, one must use a longer form of the
command:

$ git checkout <revision> -- <path>





To unstage a file, one uses the ‘reset’ command:

$ git reset <path>





This tells Git to reset ‘<path>’ in the staging area to the top of tree commit
(which in Git is called ‘HEAD’). In order to correct a mistake, you can pass the
‘amend’ flag to Git:

$ git commit --amend





This will cause all staged changes to be merged into ‘HEAD’. Once one has made
all the relevant commits, in order to push the changes to the remote repository
the ‘push’ command is used:

$ git push origin master





If a different committer has committed changes such that there are remote
commits that are not present locally, this will fail. In order to get around
this issue, perform:

$ git pull --rebase origin master





in order to pull the new remote commits and replay your new commits on top. Then
try to push again. See the ‘Checkout’ section above how to configure the local
swift repository to always rebase allowing you to drop the ‘–rebase’ flag.




Revert

In SVN reverting a commit implies performing a reverse merge. In Git, this is no
longer true. Instead one now just uses the ‘revert’ command:

$ git revert <revision>





This will cause Git to perform the reverse merge of that revision for you
against HEAD and bring up a message window for you to write a commit
message. This will be autofilled in with the title of the commit that is going
to be reverted and the revision number of that commit like so:

Revert "<FIRST LINE OF REVERTED COMMITS COMMIT MSG>"

This reverts commit <REVISION>.





One can edit this message as one sees fit. Once this has been done, the revert
will become a normal commit in your repository like any other commit. Thus to
revert the commit in the remote repository, you need to perform a Git push:

$ git push origin master








Browsing

This section explains how one can view Git changes. In order to view a history
of all changes on a branch to the beginning of time use the ‘log’ command:

$ git log





This will for each commit show the following information:

commit <REVISION>
Author: <AUTHOR NAME> <AUTHOR EMAIL>
Date:   <TIMESTAMP>

    <COMMIT MSG>





To see history starting at a specific commit use the following form of a Git log
command:

$ git log <REVISION>





To see a oneline summary that includes just the title of the commit and its
hash, pass the ‘–oneline’ command:

$ git log --oneline





It will not show you what was actually changed in each commit. In order to see
what was actually changed in a commit, use the command ‘show’:

$ git show





This will show the aforementioned information shown by Git log, but additionally
will perform a diff against top of tree showing you the contents of the
change. To see the changes for a specific commit, pass the revision to Git
show:

$ git show <REVISION>











          

      

      

    

  

    
      
          
            
  
Scope and introduction

This document defines the policy for applying access control modifiers and
related naming conventions for the Swift standard library and overlays.

In this document, “stdlib” refers to the core standard library and
overlays for system frameworks written in Swift.

Swift has three levels of access control — private, internal
and public.  As currently implemented, access control is only
concerned with API-level issues, not ABI.  The stdlib does not have a stable ABI,
and is compiled in “non-resilient” mode with inlining into user code; thus, all
stdlib symbols are considered ABI and stdlib clients should be recompiled after
any change to the stdlib.




public

User-visible APIs should be marked public.

Unfortunately, the compiler has bugs and limitations that the stdlib
must work around by defining additional public symbols not intended
for direct consumption by users.  For example:


// Workaround.
public protocol _Collection { ... }

// Symbol intended for use outside stdlib.
public protocol Collection : _Collection { ... }


These symbols are hidden using the leading underscore rule.

Because Swift does not yet support a notion of SPI, any implementation
details that are shared across the stdlib’s various sub-modules must
also be public.  These names, too, use the leading underscore rule.

To document the reason for marking symbols public, we use comments:


	symbols used in tests:

public // @testable
func _foo() { ... }







	symbols that are SPIs for the module X:

public // SPI(X)
public _foo() { ... }












internal

In Swift, internal is an implied default everywhere—except within
public extensions and protocols.  Therefore, internal should be used
explicitly everywhere in the stdlib to avoid confusion.


Note

No declaration should omit an access



To create a “single point of truth” about whether a name is intended
for user consumption, the following names should all use the leading
underscore rule:


	module-scope private and internal symbols:

var _internalStdlibConstant: Int { ... }







	private and internal symbols nested within public types:

public struct Dictionary {
  var _representation: _DictionaryRepresentation
}












private

The private modifier can not be used in the stdlib at least until
rdar://17631278 is fixed.




Leading Underscore Rule

Variables, functions and typealiases should have names that start with an
underscore:

var _value: Int
func _bridgeSomethingToAnything(something: AnyObject) -> AnyObject
typealias _InternalTypealias = HeapBuffer<Int, Int>





To apply the rule to an initializer, one of its label arguments or
internal parameter names must start with an underscore:

public struct Foo {
  init(_count: Int) {}
  init(_ _otherInitializer: Int) {}
}






Note

the identifier that consists of a single underscore _ is not
considered to be a name that starts with an underscore.  For example, this
initializer is public:

public struct Foo {
  init(_ count: Int) {}
}







The compiler and IDE tools may use the leading underscore rule,
combined with additional heuristics, to hide stdlib symbols that users
don’t need to see.

Users are prohibited to use leading underscores symbols in their own source
code, even if these symbols are visible through compiler diagnostics
or IDE tools.





          

      

      

    

  

    
      
          
            
  
The Swift ABI
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Hard Constraints on Resilience

The root of a class hierarchy must remain stable, at pain of
invalidating the metaclass hierarchy.  Note a Swift class without an
explicit base class is implicitly rooted in the SwiftObject
Objective-C class.




Type Layout


Fragile Struct and Tuple Layout

Structs and tuples currently share the same layout algorithm, noted as the
“Universal” layout algorithm in the compiler implementation. The algorithm
is as follows:


	Start with a size of 0 and an alignment of 1.

	Iterate through the fields, in element order for tuples, or in var
declaration order for structs. For each field:
	Update size by rounding up to the alignment of the field, that is,
increasing it to the least value greater or equal to size and evenly
divisible by the alignment of the field.

	Assign the offset of the field to the current value of size.

	Update size by adding the size of the field.

	Update alignment to the max of alignment and the
alignment of the field.





	The final size and alignment are the size and alignment of the
aggregate. The stride of the type is the final size rounded up to
alignment.



Note that this differs from C or LLVM’s normal layout rules in that size
and stride are distinct; whereas C layout requires that an embedded struct’s
size be padded out to its alignment and that nothing be laid out there,
Swift layout allows an outer struct to lay out fields in the inner struct’s
tail padding, alignment permitting. Unlike C, zero-sized structs and tuples
are also allowed, and take up no storage in enclosing aggregates. The Swift
compiler emits LLVM packed struct types with manual padding to get the
necessary control over the binary layout. Some examples:

// LLVM <{ i64, i8 }>
struct S {
  var x: Int
  var y: UInt8
}

// LLVM <{ i8, [7 x i8], <{ i64, i8 }>, i8 }>
struct S2 {
  var x: UInt8
  var s: S
  var y: UInt8
}

// LLVM <{}>
struct Empty {}

// LLVM <{ i64, i64 }>
struct ContainsEmpty {
  var x: Int
  var y: Empty
  var z: Int
}








Class Layout

Swift relies on the following assumptions about the Objective-C runtime,
which are therefore now part of the Objective-C ABI:


	32-bit platforms never have tagged pointers.  ObjC pointer types are
either nil or an object pointer.

	On x86-64, a tagged pointer either sets the lowest bit of the pointer
or the highest bit of the pointer.  Therefore, both of these bits are
zero if and only if the value is not a tagged pointer.

	On ARM64, a tagged pointer always sets the highest bit of the pointer.

	32-bit platforms never perform any isa masking.  object_getClass
is always equivalent to *(Class*)object.

	64-bit platforms perform isa masking only if the runtime exports a
symbol uintptr_t objc_debug_isa_class_mask;.  If this symbol
is exported, object_getClass on a non-tagged pointer is always
equivalent to (Class)(objc_debug_isa_class_mask & *(uintptr_t*)object).

	The superclass field of a class object is always stored immediately
after the isa field.  Its value is either nil or a pointer to the
class object for the superclass; it never has other bits set.



The following assumptions are part of the Swift ABI:


	Swift class pointers are never tagged pointers.



TODO




Fragile Enum Layout

In laying out enum types, the ABI attempts to avoid requiring additional
storage to store the tag for the enum case. The ABI chooses one of five
strategies based on the layout of the enum:


Empty Enums

In the degenerate case of an enum with no cases, the enum is an empty type.

enum Empty {} // => empty type








Single-Case Enums

In the degenerate case of an enum with a single case, there is no
discriminator needed, and the enum type has the exact same layout as its
case’s data type, or is empty if the case has no data type.

enum EmptyCase { case X }             // => empty type
enum DataCase { case Y(Int, Double) } // => LLVM <{ i64, double }>








C-Like Enums

If none of the cases has a data type (a “C-like” enum), then the enum
is laid out as an integer tag with the minimal number of bits to contain
all of the cases. The machine-level layout of the type then follows LLVM’s
data layout rules for integer types on the target platform. The cases are
assigned tag values in declaration order.

enum EnumLike2 { // => LLVM i1
  case A         // => i1 0
  case B         // => i1 1
}

enum EnumLike8 { // => LLVM i3
  case A         // => i3 0
  case B         // => i3 1
  case C         // => i3 2
  case D         // etc.
  case E
  case F
  case G
  case H
}





Discriminator values after the one used for the last case become extra
inhabitants of the enum type (see Single-Payload Enums).




Single-Payload Enums

If an enum has a single case with a data type and one or more no-data cases
(a “single-payload” enum), then the case with data type is represented using
the data type’s binary representation, with added zero bits for tag if
necessary. If the data type’s binary representation
has extra inhabitants, that is, bit patterns with the size and alignment of
the type but which do not form valid values of that type, they are used to
represent the no-data cases, with extra inhabitants in order of ascending
numeric value matching no-data cases in declaration order. If the type
has spare bits (see Multi-Payload Enums), they are used to form extra
inhabitants. The enum value is then represented as an integer with the storage
size in bits of the data type. Extra inhabitants of the payload type not used
by the enum type become extra inhabitants of the enum type itself.

enum CharOrSectionMarker { => LLVM i32
  case Paragraph            => i32 0x0020_0000
  case Char(UnicodeScalar)  => i32 (zext i21 %Char to i32)
  case Chapter              => i32 0x0020_0001
}

CharOrSectionMarker.Char('\x00') => i32 0x0000_0000
CharOrSectionMarker.Char('\u10FFFF') => i32 0x0010_FFFF

enum CharOrSectionMarkerOrFootnoteMarker { => LLVM i32
  case CharOrSectionMarker(CharOrSectionMarker) => i32 %CharOrSectionMarker
  case Asterisk                                 => i32 0x0020_0002
  case Dagger                                   => i32 0x0020_0003
  case DoubleDagger                             => i32 0x0020_0004
}





If the data type has no extra inhabitants, or there are not enough extra
inhabitants to represent all of the no-data cases, then a tag bit is added
to the enum’s representation. The tag bit is set for the no-data cases, which
are then assigned values in the data area of the enum in declaration order.

enum IntOrInfinity { => LLVM <{ i64, i1 }>
  case NegInfinity    => <{ i64, i1 }> {    0, 1 }
  case Int(Int)       => <{ i64, i1 }> { %Int, 0 }
  case PosInfinity    => <{ i64, i1 }> {    1, 1 }
}

IntOrInfinity.Int(    0) => <{ i64, i1 }> {     0, 0 }
IntOrInfinity.Int(20721) => <{ i64, i1 }> { 20721, 0 }








Multi-Payload Enums

If an enum has more than one case with data type, then a tag is necessary to
discriminate the data types. The ABI will first try to find common
spare bits, that is, bits in the data types’ binary representations which are
either fixed-zero or ignored by valid values of all of the data types. The tag
will be scattered into these spare bits as much as possible. Currently only
spare bits of primitive integer types, such as the high bits of an i21
type, are considered. The enum data is represented as an integer with the
storage size in bits of the largest data type.

enum TerminalChar {             => LLVM i32
  case Plain(UnicodeScalar)     => i32     (zext i21 %Plain     to i32)
  case Bold(UnicodeScalar)      => i32 (or (zext i21 %Bold      to i32), 0x0020_0000)
  case Underline(UnicodeScalar) => i32 (or (zext i21 %Underline to i32), 0x0040_0000)
  case Blink(UnicodeScalar)     => i32 (or (zext i21 %Blink     to i32), 0x0060_0000)
  case Empty                    => i32 0x0080_0000
  case Cursor                   => i32 0x0080_0001
}





If there are not enough spare bits to contain the tag, then additional bits are
added to the representation to contain the tag. Tag values are
assigned to data cases in declaration order. If there are no-data cases, they
are collected under a common tag, and assigned values in the data area of the
enum in declaration order.

class Bignum {}

enum IntDoubleOrBignum { => LLVM <{ i64, i2 }>
  case Int(Int)           => <{ i64, i2 }> {           %Int,            0 }
  case Double(Double)     => <{ i64, i2 }> { (bitcast  %Double to i64), 1 }
  case Bignum(Bignum)     => <{ i64, i2 }> { (ptrtoint %Bignum to i64), 2 }
}










Existential Container Layout

Values of protocol type, protocol composition type, or “any” type
(protocol<>) are laid out using existential containers (so-called
because these types are “existential types” in type theory).


Opaque Existential Containers

If there is no class constraint on a protocol or protocol composition type,
the existential container has to accommodate a value of arbitrary size and
alignment. It does this using a fixed-size buffer, which is three pointers
in size and pointer-aligned. This either directly contains the value, if its
size and alignment are both less than or equal to the fixed-size buffer’s, or
contains a pointer to a side allocation owned by the existential container.
The type of the contained value is identified by its type metadata record,
and witness tables for all of the required protocol conformances are included.
The layout is as if declared in the following C struct:

struct OpaqueExistentialContainer {
  void *fixedSizeBuffer[3];
  Metadata *type;
  WitnessTable *witnessTables[NUM_WITNESS_TABLES];
};








Class Existential Containers

If one or more of the protocols in a protocol or protocol composition type
have a class constraint, then only class values can be stored in the existential
container, and a more efficient representation is used. Class instances are
always a single pointer in size, so a fixed-size buffer and potential side
allocation is not needed, and class instances always have a reference to their
own type metadata, so the separate metadata record is not needed. The
layout is thus as if declared in the following C struct:

struct ClassExistentialContainer {
  HeapObject *value;
  WitnessTable *witnessTables[NUM_WITNESS_TABLES];
};





Note that if no witness tables are needed, such as for the “any class” type
protocol<class> or an Objective-C protocol type, then the only element of
the layout is the heap object pointer. This is ABI-compatible with id
and id <Protocol> types in Objective-C.








Type Metadata

The Swift runtime keeps a metadata record for every type used in a program,
including every instantiation of generic types. These metadata records can
be used by (TODO: reflection and) debugger tools to discover information about
types. For non-generic nominal types, these metadata records are generated
statically by the compiler. For instances of generic types, and for intrinsic
types such as tuples, functions, protocol compositions, etc., metadata records
are lazily created by the runtime as required. Every type has a unique metadata
record; two metadata pointer values are equal iff the types are equivalent.

In the layout descriptions below, offsets are given relative to the
metadata pointer as an index into an array of pointers. On a 32-bit platform,
offset 1 means an offset of 4 bytes, and on 64-bit platforms, it means
an offset of 8 bytes.


Common Metadata Layout

All metadata records share a common header, with the following fields:


	The value witness table pointer references a vtable of functions
that implement the value semantics of the type, providing fundamental
operations such as allocating, copying, and destroying values of the type.
The value witness table also records the size, alignment, stride, and other
fundamental properties of the type. The value witness table pointer is at
offset -1 from the metadata pointer, that is, the pointer-sized word
immediately before the pointer’s referenced address.



	The kind field is a pointer-sized integer that describes the kind of type
the metadata describes. This field is at offset 0 from the metadata
pointer.

The current kind values are as follows:


	Struct metadata has a kind of 1.

	Enum metadata has a kind of 2.

	Opaque metadata has a kind of 8. This is used for compiler
Builtin primitives that have no additional runtime information.

	Tuple metadata has a kind of 9.

	Function metadata has a kind of 10.

	Protocol metadata has a kind of 12. This is used for
protocol types, for protocol compositions, and for the “any” type
protocol<>.

	Metatype metadata has a kind of 13.

	Class metadata, instead of a kind, has an isa pointer in its kind slot,
pointing to the class’s metaclass record. This isa pointer is guaranteed
to have an integer value larger than 4096 and so can be discriminated
from non-class kind values.










Struct Metadata

In addition to the common metadata layout fields, struct metadata records
contain the following fields:


	The nominal type descriptor is referenced at offset 1.



	A reference to the parent metadata record is stored at offset 2. For
structs that are members of an enclosing nominal type, this is a reference
to the enclosing type’s metadata. For top-level structs, this is null.

TODO: The parent pointer is currently always null.



	A vector of field offsets begins at offset 3. For each field of the
struct, in var declaration order, the field’s offset in bytes from the
beginning of the struct is stored as a pointer-sized integer.



	If the struct is generic, then the
generic parameter vector begins at offset 3+n, where n is the
number of fields in the struct.








Enum Metadata

In addition to the common metadata layout fields, enum metadata records
contain the following fields:


	The nominal type descriptor is referenced at offset 1.



	A reference to the parent metadata record is stored at offset 2. For
enums that are members of an enclosing nominal type, this is a reference to
the enclosing type’s metadata. For top-level enums, this is null.

TODO: The parent pointer is currently always null.



	If the enum is generic, then the
generic parameter vector begins at offset 3.








Tuple Metadata

In addition to the common metadata layout fields, tuple metadata records
contain the following fields:


	The number of elements in the tuple is a pointer-sized integer at
offset 1.



	The labels string is a pointer to a list of consecutive null-terminated
label names for the tuple at offset 2. Each label name is given as a
null-terminated, UTF-8-encoded string in sequence. If the tuple has no
labels, this is a null pointer.

TODO: The labels string pointer is currently always null, and labels are
not factored into tuple metadata uniquing.



	The element vector begins at offset 3 and consists of a vector of
type–offset pairs. The metadata for the nth element’s type is a pointer
at offset 3+2*n. The offset in bytes from the beginning of the tuple to
the beginning of the nth element is at offset 3+2*n+1.








Function Metadata

In addition to the common metadata layout fields, function metadata records
contain the following fields:


	The number of arguments to the function is stored at offset 1.



	A reference to the result type metadata record is stored at
offset 2. If the function has multiple returns, this references a
tuple metadata record.



	The argument vector begins at offset 3 and consists of pointers to
metadata records of the function’s arguments.

If the function takes any inout arguments, a pointer to each argument’s
metadata record will be appended separately, the lowest bit being set if it is
inout. Because of pointer alignment, the lowest bit will always be free to
hold this tag.

If the function takes no inout arguments, there will be only one pointer in
the vector for the following cases:


	0 arguments: a tuple metadata record for the empty tuple

	1 argument: the first and only argument’s metadata record

	>1 argument: a tuple metadata record containing the arguments










Protocol Metadata

In addition to the common metadata layout fields, protocol metadata records
contain the following fields:


	A layout flags word is stored at offset 1. The bits of this word
describe the existential container layout used to represent
values of the type. The word is laid out as follows:


	The number of witness tables is stored in the least significant 31 bits.
Values of the protocol type contain this number of witness table pointers
in their layout.

	The class constraint is stored at bit 31. This bit is set if the type
is not class-constrained, meaning that struct, enum, or class values
can be stored in the type. If not set, then only class values can be stored
in the type, and the type uses a more efficient layout.



Note that the field is pointer-sized, even though only the lowest 32 bits are
currently inhabited on all platforms. These values can be derived from the
protocol descriptor records, but are pre-calculated for convenience.



	The number of protocols that make up the protocol composition is stored at
offset 2. For the “any” types protocol<> or protocol<class>, this
is zero. For a single-protocol type P, this is one. For a protocol
composition type protocol<P, Q, ...>, this is the number of protocols.



	The protocol descriptor vector begins at offset 3. This is an inline
array of pointers to the protocol descriptor for every protocol in the
composition, or the single protocol descriptor for a protocol type. For
an “any” type, there is no protocol descriptor vector.








Metatype Metadata

In addition to the common metadata layout fields, metatype metadata records
contain the following fields:


	A reference to the metadata record for the instance type that the metatype
represents is stored at offset 1.






Class Metadata

Class metadata is designed to interoperate with Objective-C; all class metadata
records are also valid Objective-C Class objects. Class metadata pointers
are used as the values of class metatypes, so a derived class’s metadata
record also serves as a valid class metatype value for all of its ancestor
classes.


	The destructor pointer is stored at offset -2 from the metadata
pointer, behind the value witness table. This function is invoked by Swift’s
deallocator when the class instance is destroyed.



	The isa pointer pointing to the class’s Objective-C-compatible metaclass
record is stored at offset 0, in place of an integer kind discriminator.



	The super pointer pointing to the metadata record for the superclass is
stored at offset 1. If the class is a root class, it is null.



	Two words are reserved for use by the Objective-C runtime at offset 2
and offset 3.



	The rodata pointer is stored at offset 4; it points to an Objective-C
compatible rodata record for the class. This pointer value includes a tag.
The low bit is always set to 1 for Swift classes and always set to 0 for
Objective-C classes.



	The class flags are a 32-bit field at offset 5.



	The instance address point is a 32-bit field following the class flags.
A pointer to an instance of this class points this number of bytes after the
beginning of the instance.



	The instance size is a 32-bit field following the instance address point.
This is the number of bytes of storage present in every object of this type.



	The instance alignment mask is a 16-bit field following the instance size.
This is a set of low bits which must not be set in a pointer to an instance
of this class.



	The runtime-reserved field is a 16-bit field following the instance
alignment mask.  The compiler initializes this to zero.



	The class object size is a 32-bit field following the runtime-reserved
field.  This is the total number of bytes of storage in the class metadata
object.



	The class object address point is a 32-bit field following the class
object size.  This is the number of bytes of storage in the class metadata
object.



	The nominal type descriptor for the most-derived class type is referenced
at an offset immediately following the class object address point. This is
offset 8 on a 64-bit platform or offset 11 on a 32-bit platform.



	For each Swift class in the class’s inheritance hierarchy, in order starting
from the root class and working down to the most derived class, the following
fields are present:


	First, a reference to the parent metadata record is stored.
For classes that are members of an enclosing nominal type, this is a
reference to the enclosing type’s metadata. For top-level classes, this is
null.

TODO: The parent pointer is currently always null.



	If the class is generic, its generic parameter vector is stored inline.



	The vtable is stored inline and contains a function pointer to the
implementation of every method of the class in declaration order.



	If the layout of a class instance is dependent on its generic parameters,
then a field offset vector is stored inline, containing offsets in
bytes from an instance pointer to each field of the class in declaration
order. (For classes with fixed layout, the field offsets are accessible
statically from global variables, similar to Objective-C ivar offsets.)





Note that none of these fields are present for Objective-C base classes in
the inheritance hierarchy.








Generic Parameter Vector

Metadata records for instances of generic types contain information about their
generic parameters. For each parameter of the type, a reference to the metadata
record for the type argument is stored.  After all of the type argument
metadata references, for each type parameter, if there are protocol
requirements on that type parameter, a reference to the witness table for each
protocol it is required to conform to is stored in declaration order.

For example, given a generic type with the parameters <T, U, V>, its
generic parameter record will consist of references to the metadata records
for T, U, and V in succession, as if laid out in a C struct:

struct GenericParameterVector {
  TypeMetadata *T, *U, *V;
};





If we add protocol requirements to the parameters, for example,
<T: Runcible, U: protocol<Fungible, Ansible>, V>, then the type’s generic
parameter vector contains witness tables for those protocols, as if laid out:

struct GenericParameterVector {
  TypeMetadata *T, *U, *V;
  RuncibleWitnessTable *T_Runcible;
  FungibleWitnessTable *U_Fungible;
  AnsibleWitnessTable *U_Ansible;
};








Nominal Type Descriptor

The metadata records for class, struct, and enum types contain a pointer to a
nominal type descriptor, which contains basic information about the nominal
type such as its name, members, and metadata layout. For a generic type, one
nominal type descriptor is shared for all instantiations of the type. The
layout is as follows:


	The kind of type is stored at offset 0, which is as follows:
	0 for a class,

	1 for a struct, or

	2 for an enum.





	The mangled name is referenced as a null-terminated C string at
offset 1. This name includes no bound generic parameters.

	The following four fields depend on the kind of nominal type.
	For a struct or class:
	The number of fields is stored at offset 2. This is the length
of the field offset vector in the metadata record, if any.

	The offset to the field offset vector is stored at offset 3.
This is the offset in pointer-sized words of the field offset vector for
the type in the metadata record. If no field offset vector is stored
in the metadata record, this is zero.

	The field names are referenced as a doubly-null-terminated list of
C strings at offset 4. The order of names corresponds to the order
of fields in the field offset vector.

	The field type accessor is a function pointer at offset 5. If
non-null, the function takes a pointer to an instance of type metadata
for the nominal type, and returns a pointer to an array of type metadata
references for the types of the fields of that instance. The order matches
that of the field offset vector and field name list.





	For an enum:
	The number of payload cases and payload size offset are stored
at offset 2. The least significant 24 bits are the number of payload
cases, and the most significant 8 bits are the offset of the payload
size in the type metadata, if present.

	The number of no-payload cases is stored at offset 3.

	The case names are referenced as a doubly-null-terminated list of
C strings at offset 4. The names are ordered such that payload cases
come first, followed by no-payload cases. Within each half of the list,
the order of names corresponds to the order of cases in the enum
declaration.

	The case type accessor is a function pointer at offset 5. If
non-null, the function takes a pointer to an instance of type metadata
for the enum, and returns a pointer to an array of type metadata
references for the types of the cases of that instance. The order matches
that of the case name list. This function is similar to the field type
accessor for a struct, except also the least significant bit of each
element in the result is set if the enum case is an indirect case.









	If the nominal type is generic, a pointer to the metadata pattern that
is used to form instances of the type is stored at offset 6. The pointer
is null if the type is not generic.

	The generic parameter descriptor begins at offset 7. This describes
the layout of the generic parameter vector in the metadata record:
	The offset of the generic parameter vector is stored at offset 7.
This is the offset in pointer-sized words of the generic parameter vector
inside the metadata record. If the type is not generic, this is zero.

	The number of type parameters is stored at offset 8. This count
includes associated types of type parameters with protocol constraints.

	The number of type parameters is stored at offset 9. This count
includes only the primary formal type parameters.

	For each type parameter n, the following fields are stored:
	The number of witnesses for the type parameter is stored at
offset 10+n. This is the number of witness table pointers that are
stored for the type parameter in the generic parameter vector.











Note that there is no nominal type descriptor for protocols or protocol types.
See the protocol descriptor description below.




Protocol Descriptor

Protocol metadata contains references to zero, one, or more protocol
descriptors that describe the protocols values of the type are required to
conform to. The protocol descriptor is laid out to be compatible with
Objective-C Protocol objects. The layout is as follows:


	An isa placeholder is stored at offset 0. This field is populated by
the Objective-C runtime.

	The mangled name is referenced as a null-terminated C string at
offset 1.

	If the protocol inherits one or more other protocols, a pointer to the
inherited protocols list is stored at offset 2. The list starts with
the number of inherited protocols as a pointer-sized integer, and is followed
by that many protocol descriptor pointers. If the protocol inherits no other
protocols, this pointer is null.

	For an ObjC-compatible protocol, its required instance methods are stored
at offset 3 as an ObjC-compatible method list. This is null for native
Swift protocols.

	For an ObjC-compatible protocol, its required class methods are stored
at offset 4 as an ObjC-compatible method list. This is null for native
Swift protocols.

	For an ObjC-compatible protocol, its optional instance methods are stored
at offset 5 as an ObjC-compatible method list. This is null for native
Swift protocols.

	For an ObjC-compatible protocol, its optional class methods are stored
at offset 6 as an ObjC-compatible method list. This is null for native
Swift protocols.

	For an ObjC-compatible protocol, its instance properties are stored
at offset 7 as an ObjC-compatible property list. This is null for native
Swift protocols.

	The size of the protocol descriptor record is stored as a 32-bit integer
at offset 8. This is currently 72 on 64-bit platforms and 40 on 32-bit
platforms.

	Flags are stored as a 32-bit integer after the size. The following bits
are currently used (counting from least significant bit zero):
	Bit 0 is the Swift bit. It is set for all protocols defined in
Swift and unset for protocols defined in Objective-C.

	Bit 1 is the class constraint bit. It is set if the protocol is
not class-constrained, meaning that any struct, enum, or class type
may conform to the protocol. It is unset if only classes can conform to
the protocol. (The inverted meaning is for compatibility with Objective-C
protocol records, in which the bit is never set. Objective-C protocols can
only be conformed to by classes.)

	Bit 2 is the witness table bit. It is set if dispatch to the
protocol’s methods is done through a witness table, which is either passed
as an extra parameter to generic functions or included in the existential
container layout of protocol types. It is unset if dispatch is done
through objc_msgSend and requires no additional information to accompany
a value of conforming type.

	Bit 31 is set by the Objective-C runtime when it has done its
initialization of the protocol record. It is unused by the Swift runtime.












Heap Objects


Heap Metadata




Heap Object Header






Mangling

mangled-name ::= '_T' global





All Swift-mangled names begin with this prefix.


Globals

global ::= 't' type                    // standalone type (for DWARF)
global ::= 'M' type                    // type metadata (address point)
                                       // -- type starts with [BCOSTV]
global ::= 'Mf' type                   // 'full' type metadata (start of object)
global ::= 'MP' type                   // type metadata pattern
global ::= 'Ma' type                   // type metadata access function
global ::= 'ML' type                   // type metadata lazy cache variable
global ::= 'Mm' type                   // class metaclass
global ::= 'Mn' nominal-type           // nominal type descriptor
global ::= 'Mp' protocol               // protocol descriptor
global ::= 'PA' .*                     // partial application forwarder
global ::= 'PAo' .*                    // ObjC partial application forwarder
global ::= 'w' value-witness-kind type // value witness
global ::= 'WV' type                   // value witness table
global ::= 'Wo' entity                 // witness table offset
global ::= 'Wv' directness entity      // field offset
global ::= 'WP' protocol-conformance   // protocol witness table
global ::= 'Wa' protocol-conformance   // protocol witness table accessor
global ::= 'Wl' type protocol-conformance // lazy protocol witness table accessor
global ::= 'WL' protocol-conformance   // lazy protocol witness table cache variable
global ::= 'WD' protocol-conformance   // dependent proto witness table generator
global ::= 'Wd' protocol-conformance   // dependent proto witness table template
global ::= entity                      // some identifiable thing
global ::= 'TO' global                 // ObjC-as-swift thunk
global ::= 'To' global                 // swift-as-ObjC thunk
global ::= 'TD' global                 // dynamic dispatch thunk
global ::= 'Td' global                 // direct method reference thunk
global ::= 'TR' reabstract-signature   // reabstraction thunk helper function
global ::= 'Tr' reabstract-signature   // reabstraction thunk

global ::= 'TS' specializationinfo '_' mangled-name
specializationinfo ::= 'g' passid (type protocol-conformance* '_')+            // Generic specialization info.
specializationinfo ::= 'f' passid (funcspecializationarginfo '_')+             // Function signature specialization kind
passid ::= integer                                                             // The id of the pass that generated this specialization.
funcsigspecializationarginfo ::= 'cl' closurename type*                        // Closure specialized with closed over types in argument order.
funcsigspecializationarginfo ::= 'n'                                           // Unmodified argument
funcsigspecializationarginfo ::= 'cp' funcsigspecializationconstantproppayload // Constant propagated argument
funcsigspecializationarginfo ::= 'd'                                           // Dead argument
funcsigspecializationarginfo ::= 'g' 's'?                                      // Owned => Guaranteed and Exploded if 's' present.
funcsigspecializationarginfo ::= 's'                                           // Exploded
funcsigspecializationconstantpropinfo ::= 'fr' mangled-name
funcsigspecializationconstantpropinfo ::= 'g' mangled-name
funcsigspecializationconstantpropinfo ::= 'i' 64-bit-integer
funcsigspecializationconstantpropinfo ::= 'fl' float-as-64-bit-integer
funcsigspecializationconstantpropinfo ::= 'se' stringencoding 'v' md5hash

global ::= 'TV' global                 // vtable override thunk
global ::= 'TW' protocol-conformance entity
                                       // protocol witness thunk
entity ::= nominal-type                // named type declaration
entity ::= static? entity-kind context entity-name
entity-kind ::= 'F'                    // function (ctor, accessor, etc.)
entity-kind ::= 'v'                    // variable (let/var)
entity-kind ::= 'i'                    // subscript ('i'ndex) itself (not the individual accessors)
entity-kind ::= 'I'                    // initializer
entity-name ::= decl-name type         // named declaration
entity-name ::= 'A' index              // default argument generator
entity-name ::= 'a' addressor-kind decl-name type     // mutable addressor
entity-name ::= 'C' type               // allocating constructor
entity-name ::= 'c' type               // non-allocating constructor
entity-name ::= 'D'                    // deallocating destructor; untyped
entity-name ::= 'd'                    // non-deallocating destructor; untyped
entity-name ::= 'g' decl-name type     // getter
entity-name ::= 'i'                    // non-local variable initializer
entity-name ::= 'l' addressor-kind decl-name type     // non-mutable addressor
entity-name ::= 'm' decl-name type     // materializeForSet
entity-name ::= 's' decl-name type     // setter
entity-name ::= 'U' index type         // explicit anonymous closure expression
entity-name ::= 'u' index type         // implicit anonymous closure
entity-name ::= 'w' decl-name type     // willSet
entity-name ::= 'W' decl-name type     // didSet
static ::= 'Z'                         // entity is a static member of a type
decl-name ::= identifier
decl-name ::= local-decl-name
decl-name ::= private-decl-name
local-decl-name ::= 'L' index identifier  // locally-discriminated declaration
private-decl-name ::= 'P' identifier identifier  // file-discriminated declaration
reabstract-signature ::= ('G' generic-signature)? type type
addressor-kind ::= 'u'                 // unsafe addressor (no owner)
addressor-kind ::= 'O'                 // owning addressor (non-native owner)
addressor-kind ::= 'o'                 // owning addressor (native owner)
addressor-kind ::= 'p'                 // pinning addressor (native owner)





An entity starts with a nominal-type-kind ([COPV]), a
substitution ([Ss]) of a nominal type, or an entity-kind
([FIiv]).

An entity-name starts with [AaCcDggis] or a decl-name.
A decl-name starts with [LP] or an identifier ([0-9oX]).

A context starts with either an entity, an extension (which starts
with [Ee]), or a module, which might be an identifier ([0-9oX])
or a substitution of a module ([Ss]).

A global mangling starts with an entity or [MTWw].

If a partial application forwarder is for a static symbol, its name will
start with the sequence _TPA_ followed by the mangled symbol name of the
forwarder’s destination.

A generic specialization mangling consists of a header, specifying the types
and conformances used to specialize the generic function, followed by the
full mangled name of the original unspecialized generic symbol.

The first identifier in a <private-decl-name> is a string that represents
the file the original declaration came from. It should be considered unique
within the enclosing module. The second identifier is the name of the entity.

Not all declarations marked private declarations will use the
<private-decl-name> mangling; if the entity’s context is enough to uniquely
identify the entity, the simple identifier form is preferred.

The types in a <reabstract-signature> are always non-polymorphic
<impl-function-type> types.




Direct and Indirect Symbols

directness ::= 'd'                         // direct
directness ::= 'i'                         // indirect





A direct symbol resolves directly to the address of an object.  An
indirect symbol resolves to the address of a pointer to the object.
They are distinct manglings to make a certain class of bugs
immediately obvious.

The terminology is slightly overloaded when discussing offsets.  A
direct offset resolves to a variable holding the true offset.  An
indirect offset resolves to a variable holding an offset to be applied
to type metadata to get the address of the true offset.  (Offset
variables are required when the object being accessed lies within a
resilient structure.  When the layout of the object may depend on
generic arguments, these offsets must be kept in metadata.  Indirect
field offsets are therefore required when accessing fields in generic
types where the metadata itself has unknown layout.)




Declaration Contexts

context ::= module
context ::= extension
context ::= entity
module ::= substitution                    // other substitution
module ::= identifier                      // module name
module ::= known-module                    // abbreviation
extension ::= 'E' module entity
extension ::= 'e' module generic-signature entity





These manglings identify the enclosing context in which an entity was declared,
such as its enclosing module, function, or nominal type.

An extension mangling is used whenever an entity’s declaration context is
an extension and the entity being extended is in a different module. In this
case the extension’s module is mangled first, followed by the entity being
extended. If the extension and the extended entity are in the same module, the
plain entity mangling is preferred. If the extension is constrained, the
constraints on the extension are mangled in its generic signature.

When mangling the context of a local entity within a constructor or
destructor, the non-allocating or non-deallocating variant is used.




Types

type ::= 'Bb'                              // Builtin.BridgeObject
type ::= 'BB'                              // Builtin.UnsafeValueBuffer
type ::= 'Bf' natural '_'                  // Builtin.Float<n>
type ::= 'Bi' natural '_'                  // Builtin.Int<n>
type ::= 'BO'                              // Builtin.ObjCPointer
type ::= 'Bo'                              // Builtin.ObjectPointer
type ::= 'Bp'                              // Builtin.RawPointer
type ::= 'Bv' natural type                 // Builtin.Vec<n>x<type>
type ::= 'Bw'                              // Builtin.Word
type ::= nominal-type
type ::= associated-type
type ::= 'a' context identifier            // Type alias (DWARF only)
type ::= 'b' type type                     // objc block function type
type ::= 'c' type type                     // C function pointer type
type ::= 'F' throws-annotation? type type  // function type
type ::= 'f' throws-annotation? type type  // uncurried function type
type ::= 'G' type <type>+ '_'              // generic type application
type ::= 'K' type type                     // @auto_closure function type
type ::= 'M' type                          // metatype without representation
type ::= 'XM' metatype-repr type           // metatype with representation
type ::= 'P' protocol-list '_'             // protocol type
type ::= 'PM' type                         // existential metatype without representation
type ::= 'XPM' metatype-repr type          // existential metatype with representation
type ::= archetype
type ::= 'R' type                          // inout
type ::= 'T' tuple-element* '_'            // tuple
type ::= 't' tuple-element* '_'            // variadic tuple
type ::= 'Xo' type                         // @unowned type
type ::= 'Xu' type                         // @unowned(unsafe) type
type ::= 'Xw' type                         // @weak type
type ::= 'XF' impl-function-type           // function implementation type
type ::= 'Xf' type type                    // @thin function type
nominal-type ::= known-nominal-type
nominal-type ::= substitution
nominal-type ::= nominal-type-kind declaration-name
nominal-type-kind ::= 'C'                  // class
nominal-type-kind ::= 'O'                  // enum
nominal-type-kind ::= 'V'                  // struct
archetype ::= 'Q' index                    // archetype with depth=0, idx=N
archetype ::= 'Qd' index index             // archetype with depth=M+1, idx=N
archetype ::= associated-type
archetype ::= qualified-archetype
associated-type ::= substitution
associated-type ::= 'Q' protocol-context     // self type of protocol
associated-type ::= 'Q' archetype identifier // associated type
qualified-archetype ::= 'Qq' index context   // archetype+context (DWARF only)
protocol-context ::= 'P' protocol
tuple-element ::= identifier? type
metatype-repr ::= 't'                      // Thin metatype representation
metatype-repr ::= 'T'                      // Thick metatype representation
metatype-repr ::= 'o'                      // ObjC metatype representation
throws-annotation ::= 'z'                  // 'throws' annotation on function types


type ::= 'u' generic-signature type        // generic type
type ::= 'x'                               // generic param, depth=0, idx=0
type ::= 'q' generic-param-index           // dependent generic parameter
type ::= 'q' type assoc-type-name          // associated type of non-generic param
type ::= 'w' generic-param-index assoc-type-name // associated type
type ::= 'W' generic-param-index assoc-type-name+ '_' // associated type at depth

generic-param-index ::= 'x'                // depth = 0,   idx = 0
generic-param-index ::= index              // depth = 0,   idx = N+1
generic-param-index ::= 'd' index index    // depth = M+1, idx = N





<type> never begins or ends with a number.
<type> never begins with an underscore.
<type> never begins with d.
<type> never begins with z.

Note that protocols mangle differently as types and as contexts. A protocol
context always consists of a single protocol name and so mangles without a
trailing underscore. A protocol type can have zero, one, or many protocol bounds
which are juxtaposed and terminated with a trailing underscore.

assoc-type-name ::= ('P' protocol-name)? identifier
assoc-type-name ::= substitution





Associated types use an abbreviated mangling when the base generic parameter
or associated type is constrained by a single protocol requirement. The
associated type in this case can be referenced unambiguously by name alone.
If the base has multiple conformance constraints, then the protocol name is
mangled in to disambiguate.

impl-function-type ::=
  impl-callee-convention impl-function-attribute* generic-signature? '_'
  impl-parameter* '_' impl-result* '_'
impl-callee-convention ::= 't'              // thin
impl-callee-convention ::= impl-convention  // thick, callee transfered with given convention
impl-convention ::= 'a'                     // direct, autoreleased
impl-convention ::= 'd'                     // direct, no ownership transfer
impl-convention ::= 'D'                     // direct, no ownership transfer,
                                            // dependent on 'self' parameter
impl-convention ::= 'g'                     // direct, guaranteed
impl-convention ::= 'e'                     // direct, deallocating
impl-convention ::= 'i'                     // indirect, ownership transfer
impl-convention ::= 'l'                     // indirect, inout
impl-convention ::= 'G'                     // indirect, guaranteed
impl-convention ::= 'o'                     // direct, ownership transfer
impl-convention ::= 'z' impl-convention     // error result
impl-function-attribute ::= 'Cb'            // compatible with C block invocation function
impl-function-attribute ::= 'Cc'            // compatible with C global function
impl-function-attribute ::= 'Cm'            // compatible with Swift method
impl-function-attribute ::= 'CO'            // compatible with ObjC method
impl-function-attribute ::= 'Cw'            // compatible with protocol witness
impl-function-attribute ::= 'N'             // noreturn
impl-function-attribute ::= 'G'             // generic
impl-parameter ::= impl-convention type
impl-result ::= impl-convention type





For the most part, manglings follow the structure of formal language
types.  However, in some cases it is more useful to encode the exact
implementation details of a function type.

Any <impl-function-attribute> productions must appear in the order
in which they are specified above: e.g. a noreturn C function is
mangled with CcN.

Note that the convention and function-attribute productions do not
need to be disambiguated from the start of a <type>.




Generics

protocol-conformance ::= ('u' generic-signature)? type protocol module





<protocol-conformance> refers to a type’s conformance to a protocol. The
named module is the one containing the extension or type declaration that
declared the conformance.

generic-signature ::= (generic-param-count+)? ('R' requirement*)? 'r'
generic-param-count ::= 'z'       // zero parameters
generic-param-count ::= index     // N+1 parameters
requirement ::= type-param protocol-name // protocol requirement
requirement ::= type-param type          // base class requirement
                                         // type starts with [CS]
requirement ::= type-param 'z' type      // 'z'ame-type requirement

// Special type mangling for type params that saves the initial 'q' on
// generic params
type-param ::= generic-param-index       // generic parameter
type-param ::= 'w' generic-param-index assoc-type-name // associated type
type-param ::= 'W' generic-param-index assoc-type-name+ '_'





A generic signature begins by describing the number of generic parameters at
each depth of the signature, followed by the requirements. As a special case,
no generic-param-count values indicates a single generic parameter at
the outermost depth:

urFq_q_                           // <T_0_0> T_0_0 -> T_0_0
u_0_rFq_qd_0_                     // <T_0_0><T_1_0, T_1_1> T_0_0 -> T_1_1








Value Witnesses

TODO: document these

value-witness-kind ::= 'al'           // allocateBuffer
value-witness-kind ::= 'ca'           // assignWithCopy
value-witness-kind ::= 'ta'           // assignWithTake
value-witness-kind ::= 'de'           // deallocateBuffer
value-witness-kind ::= 'xx'           // destroy
value-witness-kind ::= 'XX'           // destroyBuffer
value-witness-kind ::= 'Xx'           // destroyArray
value-witness-kind ::= 'CP'           // initializeBufferWithCopyOfBuffer
value-witness-kind ::= 'Cp'           // initializeBufferWithCopy
value-witness-kind ::= 'cp'           // initializeWithCopy
value-witness-kind ::= 'TK'           // initializeBufferWithTakeOfBuffer
value-witness-kind ::= 'Tk'           // initializeBufferWithTake
value-witness-kind ::= 'tk'           // initializeWithTake
value-witness-kind ::= 'pr'           // projectBuffer
value-witness-kind ::= 'xs'           // storeExtraInhabitant
value-witness-kind ::= 'xg'           // getExtraInhabitantIndex
value-witness-kind ::= 'Cc'           // initializeArrayWithCopy
value-witness-kind ::= 'Tt'           // initializeArrayWithTakeFrontToBack
value-witness-kind ::= 'tT'           // initializeArrayWithTakeBackToFront
value-witness-kind ::= 'ug'           // getEnumTag
value-witness-kind ::= 'up'           // destructiveProjectEnumData





<value-witness-kind> differentiates the kinds of value
witness functions for a type.




Identifiers

identifier ::= natural identifier-start-char identifier-char*
identifier ::= 'o' operator-fixity natural operator-char+

operator-fixity ::= 'p'                    // prefix operator
operator-fixity ::= 'P'                    // postfix operator
operator-fixity ::= 'i'                    // infix operator

operator-char ::= 'a'                      // & 'and'
operator-char ::= 'c'                      // @ 'commercial at'
operator-char ::= 'd'                      // / 'divide'
operator-char ::= 'e'                      // = 'equals'
operator-char ::= 'g'                      // > 'greater'
operator-char ::= 'l'                      // < 'less'
operator-char ::= 'm'                      // * 'multiply'
operator-char ::= 'n'                      // ! 'not'
operator-char ::= 'o'                      // | 'or'
operator-char ::= 'p'                      // + 'plus'
operator-char ::= 'q'                      // ? 'question'
operator-char ::= 'r'                      // % 'remainder'
operator-char ::= 's'                      // - 'subtract'
operator-char ::= 't'                      // ~ 'tilde'
operator-char ::= 'x'                      // ^ 'xor'
operator-char ::= 'z'                      // . 'zperiod'





<identifier> is run-length encoded: the natural indicates how many
characters follow.  Operator characters are mapped to letter characters as
given. In neither case can an identifier start with a digit, so
there’s no ambiguity with the run-length.

identifier ::= 'X' natural identifier-start-char identifier-char*
identifier ::= 'X' 'o' operator-fixity natural identifier-char*





Identifiers that contain non-ASCII characters are encoded using the Punycode
algorithm specified in RFC 3492, with the modifications that _ is used
as the encoding delimiter, and uppercase letters A through J are used in place
of digits 0 through 9 in the encoding character set. The mangling then
consists of an X followed by the run length of the encoded string and the
encoded string itself. For example, the identifier vergüenza is mangled
to X12vergenza_JFa. (The encoding in standard Punycode would be
vergenza-95a)

Operators that contain non-ASCII characters are mangled by first mapping the
ASCII operator characters to letters as for pure ASCII operator names, then
Punycode-encoding the substituted string. The mangling then consists of
Xo followed by the fixity, run length of the encoded string, and the encoded
string itself. For example, the infix operator «+» is mangled to
Xoi7p_qcaDc (p_qcaDc being the encoding of the substituted
string «p»).




Substitutions

substitution ::= 'S' index





<substitution> is a back-reference to a previously mangled entity. The mangling
algorithm maintains a mapping of entities to substitution indices as it runs.
When an entity that can be represented by a substitution (a module, nominal
type, or protocol) is mangled, a substitution is first looked for in the
substitution map, and if it is present, the entity is mangled using the
associated substitution index. Otherwise, the entity is mangled normally, and
it is then added to the substitution map and associated with the next
available substitution index.

For example,  in mangling a function type
(zim.zang.zung, zim.zang.zung, zim.zippity) -> zim.zang.zoo (with module
zim and class zim.zang),
the recurring contexts zim, zim.zang, and zim.zang.zung
will be mangled using substitutions after being mangled
for the first time. The first argument type will mangle in long form,
CC3zim4zang4zung, and in doing so, zim will acquire substitution S_,
zim.zang will acquire substitution S0_, and zim.zang.zung will
acquire S1_. The second argument is the same as the first and will mangle
using its substitution, CS1_. The
third argument type will mangle using the substitution for zim,
CS_7zippity. (It also acquires substitution S2_ which would be used
if it mangled again.) The result type will mangle using the substitution for
zim.zang, CS0_zoo (and acquire substitution S3_). The full
function type thus mangles as fTCC3zim4zang4zungCS1_CS_7zippity_CS0_zoo.

substitution ::= 's'





The special substitution s is used for the Swift standard library
module.




Predefined Substitutions

known-module ::= 's'                       // Swift
known-module ::= 'SC'                      // C
known-module ::= 'So'                      // Objective-C
known-nominal-type ::= 'Sa'                // Swift.Array
known-nominal-type ::= 'Sb'                // Swift.Bool
known-nominal-type ::= 'Sc'                // Swift.UnicodeScalar
known-nominal-type ::= 'Sd'                // Swift.Float64
known-nominal-type ::= 'Sf'                // Swift.Float32
known-nominal-type ::= 'Si'                // Swift.Int
known-nominal-type ::= 'SP'                // Swift.UnsafePointer
known-nominal-type ::= 'Sp'                // Swift.UnsafeMutablePointer
known-nominal-type ::= 'SQ'                // Swift.ImplicitlyUnwrappedOptional
known-nominal-type ::= 'Sq'                // Swift.Optional
known-nominal-type ::= 'SR'                // Swift.UnsafeBufferPointer
known-nominal-type ::= 'Sr'                // Swift.UnsafeMutableBufferPointer
known-nominal-type ::= 'SS'                // Swift.String
known-nominal-type ::= 'Su'                // Swift.UInt





<known-module> and <known-nominal-type> are built-in substitutions for
certain common entities.  Like any other substitution, they all start
with ‘S’.

The Objective-C module is used as the context for mangling Objective-C
classes as <type>s.




Indexes

index ::= '_'                              // 0
index ::= natural '_'                      // N+1
natural ::= [0-9]+





<index> is a production for encoding numbers in contexts that can’t
end in a digit; it’s optimized for encoding smaller numbers.









          

      

      

    

  

    
      
          
            
  
Immutability and Read-Only Methods





	Abstract:	Swift programmers can already express the concept of
read-only properties and subscripts, and can express their
intention to write on a function parameter.  However, the
model is incomplete, which currently leads to the compiler
to accept (and silently drop) mutations made by methods of
these read-only entities.  This proposal completes the
model, and additionally allows the user to declare truly
immutable data.






The Problem

Consider:

class Window {

  var title: String { // title is not writable
    get {
      return somethingComputed()
    }
  }
}

var w = Window()
w.title += " (parenthesized remark)”





What do we do with this?  Since += has an inout first
argument, we detect this situation statically (hopefully one day we’ll
have a better error message):

<REPL Input>:1:9: error: expression does not type-check
w.title += " (parenthesized remark)"
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~





Great.  Now what about this? [1]

w.title.append(" (fool the compiler)")





Today, we allow it, but since there’s no way to implement the
write-back onto w.title, the changes are silently dropped.




Unsatisfying Approaches

We considered three alternatives to the current proposal, none of
which were considered satisfactory:


	Ban method calls on read-only properties of value type

	Ban read-only properties of value type

	Status quo: silently drop the effects of some method calls



For rationales explaining why these approaches were rejected, please
refer to earlier versions of this document.




Proposed Solution


Terminology

Classes and generic parameters that conform to a protocol attributed
@class_protocol are called reference types.  All other types
are value types.




Mutating and Read-Only Methods

A method attributed with inout is considered mutating.
Otherwise, it is considered read-only.


struct Number {
  init(x: Int) { name = x.toString() }

  func getValue() {              // read-only method
    return Int(name)
  }
  mutating func increment() {  // mutating method
    name = (Int(name)+1).toString()
  }
  var name: String
}


The implicit self parameter of a struct or enum method is semantically an
inout parameter if and only if the method is attributed with
mutating.  Read-only methods do not “write back” onto their target
objects.

A program that applies the mutating to a method of a
class—or of a protocol attributed with @class_protocol—is
ill-formed.  [Note: it is logically consistent to think of all methods
of classes as read-only, even though they may in fact modify instance
variables, because they never “write back” onto the source reference.]




Mutating Operations

The following are considered mutating operations on an lvalue


	Assignment to the lvalue

	Taking its address



Remember that the following operations all take an lvalue’s address
implicitly:


	passing it to a mutating method:

var x = Number(42)
x.increment()         // mutating operation







	passing it to a function attributed with @assignment:

var y = 31
y += 3                // mutating operation







	assigning to a subscript or property (including an instance
variable) of a value type:

x._i = 3             // mutating operation
var z: Array<Int> = [1000]
z[0] = 2             // mutating operation












Binding for Rvalues

Just as var declares a name for an lvalue, let now gives a
name to an rvalue:


var clay = 42
let stone = clay + 100 // stone can now be used as an rvalue


The grammar rules for let are identical to those for var.




Properties and Subscripts

A subscript or property access expression is an rvalue if


	the property or subscript has no set clause

	the target of the property or subscript expression is an rvalue of
value type



For example, consider this extension to our Number struct:


extension Number {
  var readOnlyValue: Int { return getValue()  }

  var writableValue: Int {
    get {
     return getValue()
    }
    set(x) {
      name = x.toString()
    }
  }

  subscript(n: Int) -> String { return name }
  subscript(n: String) -> Int {
    get {
      return 42
    }
    set(x) {
      name = x.toString()
    }
  }
}


Also imagine we have a class called CNumber defined exactly the
same way as Number (except that it’s a class).  Then, the
following table holds:








	
Declaration:


Expression


	var x = Number(42)  // this
var x = CNumber(42) // or this
let x = CNumber(42) // or this






	let x = Number(42)










	x.readOnlyValue
	rvalue (no set clause)
	rvalue (target is an
rvalue of value type)


	x[3]


	x.writeableValue
	lvalue (has set clause)


	x["tree"]


	x.name
	lvalue (instance variables
implicitly have a set
clause)








The Big Rule


Error

A program that applies a mutating operation to an rvalue is ill-formed



For example:


clay = 43           // OK; a var is always assignable
stone = clay * 1000 // Error: stone is an rvalue

swap(&clay, &stone) // Error: 'stone' is an rvalue; can't take its address

stone += 3          // Error: += is declared inout, @assignment and thus
                    // implicitly takes the address of 'stone'

let x = Number(42)  // x is an rvalue
x.getValue()        // ok, read-only method
x.increment()       // Error: calling mutating method on rvalue
x.readOnlyValue     // ok, read-only property
x.writableValue     // ok, there's no assignment to writableValue
x.writableValue++   // Error: assigning into a property of an immutable value





Non-inout Function Parameters are RValues

A function that performs a mutating operation on a parameter is
ill-formed unless that parameter was marked with inout.  A
method that performs a mutating operation on self is ill-formed
unless the method is attributed with mutating:


func f(x: Int, inout y: Int) {
  y = x         // ok, y is an inout parameter
  x = y         // Error: function parameter 'x' is immutable
}





Protocols and Constraints

When a protocol declares a property or subscript requirement, a
{ get } or { get set } clause is always required.


protocol Bitset {
  var count: Int { get }
  var intValue: Int { get set }
  subscript(bitIndex: Int) -> Bool { get set }
}


Where a { get set } clause appears, the corresponding expression
on a type that conforms to the protocol must be an lvalue or the
program is ill-formed:


struct BS {
  var count: Int    // ok; an lvalue or an rvalue is fine

  var intValue : Int {
    get {
      return 3
    }
    set {             // ok, lvalue required and has a set clause
      ignore(value)
    }
  }

  subscript(i: Int) -> Bool {
    return true   // Error: needs a 'set' clause to yield an lvalue
  }
}







	[1]	String will acquire an append(other: String) method as part of the
formatting plan, but this scenario applies equally to any
method of a value type












          

      

      

    

  

    
      
          
            
  
@_transparent

Semantically, @_transparent means something like “treat this operation as
if it were a primitive operation”. The name is meant to imply that both the
compiler and the compiled program will “see through” the operation to its
implementation.

This has several consequences:


	Any calls to a function marked @_transparent MUST be inlined prior to
doing dataflow-related diagnostics, even under -Onone. This may be
necessary to catch dataflow errors.

	Because of this, a @_transparent function is inherently “fragile”, in
that changing its implementation most likely will not affect callers in
existing compiled binaries.

	Because of this, a @_transparent function MUST only reference public
symbols, and MUST not be optimized based on knowledge of the module it’s in.
[This is not currently implemented or enforced.]

	Debug info SHOULD skip over the inlined operations when single-stepping
through the calling function.



This is all that @_transparent means.


When should you use @_transparent?


	Does the implementation of this function ever have to change? Then you can’t
allow it to be inlined.

	Does the implementation need to call private things—either true-private
functions, or internal functions that might go away in the next release?
Then you can’t allow it to be inlined. (Well, you can for now for
internal, but it’ll break once we have libraries that aren’t shipped with
apps.)

	Is it okay if the function is not inlined? You’d just prefer that it were?
Then you should use [the attribute we haven’t designed yet], rather than
@_transparent. (If you really need this right now, try
@inline(__always).)

	Is it a problem if the function is inlined even under -Onone? Then you’re
really in the previous case. Trust the compiler.

	Is it a problem if you can’t step through the function that’s been inlined?
Then you don’t want @_transparent; you just want @inline(__always).

	Is it okay if the inlining happens after all the dataflow diagnostics? Then
you don’t want @_transparent; you just want @inline(__always).



If you made it this far, it sounds like @_transparent is the right choice.




Current implementation limitations


	We don’t have a general @inlineable attribute for functions that allows
inlining but doesn’t require it.

	As mentioned above, we don’t enforce that inlineable things only refer to
public symbols. rdar://problem/22666548

	We also don’t keep from optimizing based on implementation details of the
current module. [No Radar yet.]

	If you have local types in your inlineable function, serialization falls
over. (As does textual SIL.) rdar://problem/17631278

	When compiling in non-single-frontend mode, SIL is generated for each file
but then thrown away in the “merge modules” step. So none of it is inlineable
for external callers. (Currently, -whole-module-optimization is
equivalent to -force-single-frontend-invocation.) rdar://problem/18913977

	Similarly, when compiling in non-single-frontend mode, no SIL is generated for
any functions but those in the primary file (for each frontend invocation),
including @inline(__always) and @_transparent functions. This is
semantically a bug. rdar://problem/15366167









          

      

      

    

  

    
      
          
            
  
Rationales for the Swift standard library designs

This document collects rationales for the Swift standard library.  It is not
meant to document all possible designs that we considered, but might describe
some of those, when important to explain the design that was chosen.


Current designs


Some NSString APIs are mirrored on String

There was not enough time in Swift 1.0 to design a rich String API, so we
reimplemented most of NSString APIs on String for parity.  This brought
the exact NSString semantics of those APIs, for example, treatment of
Unicode or behavior in edge cases (for example, empty strings), which we might
want to reconsider.

Radars: rdar://problem/19705854




size_t is unsigned, but it is imported as Int

Converging APIs to use Int as the default integer type allows users to
write fewer explicit type conversions.

Importing size_t as a signed Int type would not be a problem for 64-bit
platforms.  The only concern is about 32-bit platforms, and only about
operating on array-like data structures that span more than half of the address
space.  Even today, in 2015, there are enough 32-bit platforms that are still
interesting, and x32 ABIs for 64-bit CPUs are also important.  We agree that
32-bit platforms are important, but the usecase for an unsigned size_t on
32-bit platforms is pretty marginal, and for code that nevertheless needs to do
that there is always the option of doing a bitcast to UInt or using C.




Type Conversions

The canonical way to convert from an instance x of type T to
type U is U(x), a precedent set by Int(value: UInt32).
Conversions that can fail should use failable initializers,
e.g. Int(text: String), yielding a Int?. When other forms provide
added convenience, they may be provided as well. For example:

String.Index(s.utf16.startIndex.successor(), within: s) // canonical
s.utf16.startIndex.successor().samePositionIn(s)        // alternate





Converting initializers generally take one parameter. A converting
initializer’s first parameter should not have an argument label unless
it indicates a lossy, non-typesafe, or non-standard conversion method,
e.g. Int(bitPattern: someUInt).  When a converting initializer
requires a parameter for context, it should not come first, and
generally should use a keyword.  For example, String(33, radix:
2).





	Rationale:	First, type conversions are typical trouble spots, and we
like the idea that people are explicit about the types to which
they’re converting.  Secondly, avoiding method or property syntax
provides a distinct context for code completion.  Rather than
appearing in completions offered after ., for example, the
available conversions could show up whenever the user hit the “tab”
key after an expression.








Protocols with restricted conformance rules

It is sometimes useful to define a public protocol that only a limited set of
types can adopt.  There is no language feature in Swift to disallow declaring
conformances in third-party code: as long as the requirements are implemented
and the protocol is accessible, the compiler allows the conformance.

The standard library adopts the following pattern: the protocol is declared as
a regular public type, but it includes at least one requirement named using the
underscore rule.  That underscored API becomes private to the users according
to the standard library convention, effectively preventing third-party code from
declaring a conformance.

For example:

public protocol CVarArgType {
  var _cVarArgEncoding: [Word] { get }
}

// Public API that uses CVaListPointer, so CVarArgType has to be public, too.
public func withVaList<R>(
  args: [CVarArgType],
  @noescape f: (CVaListPointer) -> R
) -> R








High-order functions on collections return Arrays

We can’t make map(), filter(), etc. all return Self:


	map() takes a function (T) -> U and therefore can’t return Self
literally.  The required language feature for making map() return
something like Self in generic code (higher-kinded types) doesn’t exist
in Swift.  You can’t write a method like func map(f: (T) -> U) -> Self<U>
today.



	There are lots of sequences that don’t have an appropriate form for the
result.  What happens when you filter the only element out of a
SequenceOfOne<T>, which is defined to have exactly one element?



	A map() that returns Self<U> hews most closely to the signature
required by Functor (mathematical purity of signature), but if you make map
on Set or Dictionary return Self, it violates the semantic laws
required by Functor, so it’s a false purity.  We’d rather preserve the
semantics of functional map() than its signature.



	The behavior is surprising (and error-prone) in generic code:

func countFlattenedElements<
  S : SequenceType where S.Generator.Element == Set<Double>
>(sequence: S) -> Int {
  return sequence.map { $0.count }.reduce(0) { $0 + $1 }
}









The function behaves as expected when given an [Set<Double>], but the
results are wrong for Set<Set<Double>>.  The sequence.map() operation
would return a Set<Int>, and all non-unique counts would disappear.


	Even if we throw semantics under the bus, maintaining mathematical purity of
signature prevents us from providing useful variants of these algorithms that
are the same in spirit, like the flatMap() that selects the non-nil
elements of the result sequence.






The remove*() method family on collections

Protocol extensions for RangeReplaceableCollectionType define
removeFirst(n: Int) and removeLast(n: Int).  These functions remove
exactly n elements; they don’t clamp n to count or they could be
masking bugs.

Since the standard library tries to preserve information, it also defines
special overloads that return just one element, removeFirst() -> Element
and removeLast() -> Element, that return the removed element.  These
overloads have a precondition that the collection is not empty.  Another
possible design would be that they don’t have preconditions and return
Element?.  Doing so would make the overload set inconsistent: semantics of
different overloads would be significantly different.  It would be surprising
that myData.removeFirst() and myData.removeFirst(1) are not equivalent.




Lazy functions that operate on sequences and collections

In many cases functions that operate on sequences can be implemented either
lazily or eagerly without compromising performance.  To decide between a lazy
and an eager implementation, the standard library uses the following rule.
When there is a choice, and not explicitly required by the API semantics,
functions don’t return lazy collection wrappers that refer to users’ closures.
The consequence is that all users’ closures are @noescape, except in an
explicitly lazy context.

Based on this rule, we conclude that enumeraate(), zip() and
reverse() return lazy wrappers, but filter() and map() don’t.  For
the first three functions being lazy is the right default, since usually the
result is immediately consumed by for-in, so we don’t want to allocate memory
for it.

A different design that was rejected is to preserve consistency with other
strict functions by making these methods strict, but then client code needs to
call an API with a different name, say lazyEnumerate() to opt into
laziness.  The problem is that the eager API, which would have a shorter and
less obscure name, would be less efficient for the common case.




Use of BooleanType in library APIs

Use Bool instead of a generic function over a BooleanType, unless there
are special cicrumstances (for example, func && is designed to work on all
boolean values so that && feels like a part of the language).

BooleanType is a protocol to which only Bool and ObjCBool conform.
Users don’t usually interact ObjCBool instances, except when using certain
specific APIs (for example, APIs that operate on pointers to BOOL).  If
someone already has an ObjCBool instance for whatever strange reason, they
can just convert it to Bool.  We think this is the right tradeoff:
simplifying function signatures is more important than making a marginal
usecase a bit more convenient.






Possible future directions

This section describes some of the possible future designs that we have
discussed.  Some might get dismissed, others might become full proposals and
get implemented.


Mixed-type fixed-point arithmetic

Radars: rdar://problem/18812545 rdar://problem/18812365

Standard library only defines arithmetic operators for LHS and RHS that have
matching types.  It might be useful to allow users to mix types.

There are multiple approaches:


	AIR model,

	overloads in the standard library for operations that are always safe and
can’t trap (e.g., comparisons),

	overloads in the standard library for all operations.



TODO: describe advantages

The arguments towards not doing any of these, at least in the short term:


	demand might be lower than we think: seems like users have converged towards
using Int as the default integer type.

	mitigation: import good C APIs that use appropriate typedefs for
unsigned integers (size_t for example) as Int.






Swift: Power operator

Radars: rdar://problem/17283778

It would be very useful to have a power operator in Swift.  We want to make
code look as close as possible to the domain notation, the two-dimensional
formula in this case.  In the two-dimensional representation exponentiation is
represented by a change in formatting.  With pow(), once you see the comma,
you have to scan to the left and count parentheses to even understand that
there is a pow() there.

The biggest concern is that adding an operator has a high barrier.
Nevertheless, we agree ** is the right way to spell it, if we were to have
it.  Also there was some agreement that if we did not put this operator in the
core library (so that you won’t get it by default), it would become much more
compelling.

We will revisit the discussion when we have submodules for the standard
library, in one form or the other.
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